В XX веке теории динамического хаоса
удалось объяснить природу такой непредсказуемости. Простой одномерный маятник желаний, который мы рассматривали, имел две устойчивые стационарные точки — два аттрактора, — и одну неустойчивую, от которой система старается уйти; она показана белым кружком на рисунке 2.5. В хаотическом режиме вместо набора аттракторов в системе появляется бесконечное множество неустойчивых стационарных траекторий. Это множество бесконечно, но имеет нулевую меру и представляет собой очень сложно устроенную несвязную структуру. Попав на одну из таких траекторий, в принципе невозможно ей следовать, используя какие-либо конечные алгоритмы. И вот что самое удивительное — оказалось, это бесконечное множество неустойчивых траекторий само по себе притягивающее! Хаотическая система непрерывно перескакивает от окрестности одной неустойчивой траектории к другой, все время оставаясь в пределах этого странного аттрактора. Так эти множества и называются: странные аттракторы. Вот как завораживающе красиво выглядит сечение плоскостью странного аттрактора для одномерного маятника желаний (осциллятора Дюффинга), подверженного гармоническим колебаниям (рис. 2.6). Этот объект можно описать в трехмерном пространстве (отклонение × скорость × фаза вынужденного колебания). Если рассечь аттрактор в нем плоскостью, то можно увидеть его структуру — это называется сечением Пуанкаре. Каждая точка здесь — след траектории, а оттенок точек отражает относительную скорость, с которой траектории разбегаются друг от друга. Вот еще пара красивых странных аттракторов (рис. 2.7).
Рис. 2.6.
Сечение плоскостью странного аттрактора для осциллятора Дюффинга
Рис. 2.7.
Слева: сечение Пуанкаре для траектории шарика, подпрыгивающего на подпружиненном столике. Множество точек принадлежит поверхности сферы, соответствующей закону сохранения энергии. Справа: объемная область, которая заключает в себе странный аттрактор, рождающийся при вынужденных колебаниях толстой пластины
Гладкость хаотической траектории позволяет немного заглянуть в будущее хаотической системы. Это объясняет одно досадное наблюдение: с одной стороны, синоптики порой не могут уверенно предсказать погоду на неделю, а с другой, если вы скажете, что завтра будет такая же погода, как и сегодня, то не ошибетесь примерно в трех случаях из четырех. Вообще же анекдоты о синоптиках несправедливы, и нужно отдать должное человеческой мысли и упорству, которые позволили предсказывать погоду на современном уровне!
Динамический хаос очень сложен и красив как теория, он порождает изумительные по элегантности образы, но может быть и полезен. Например, алгоритмы, с помощью которых генерируются случайные числа в компьютерах, тоже детерминированы. Для всех примеров в этой книге я применял генератор псевдослучайных чисел, который не использовал какой-нибудь реальный стохастический процесс (альфа-распад или подсчет машин на дороге), а вычислял следующее «случайное» число на базе предыдущих, полученных им ранее.
От монеток к бабочкам и самой судьбе
Наблюдения за тем, как малые отклонения вырастают в глобальные изменения системы, приводят к мысли об «эффекте бабочки». Напомню, что под ним подразумевается цепочка далеко идущих драматичных последствий от некоторого незначительного, на первый взгляд, события. Раздавленная исследователями прошлого бабочка в рассказе Рэя Брэдбери «И грянул гром» привела к кардинальной перестройке будущего. А одну из своих лекций Эдвард Лоренц, создатель теории динамического хаоса, озаглавил так: «Может ли взмах крыльев бабочки в Бразилии вызвать торнадо в Техасе?».