Любопытно, но, окажись у нас идеальный генератор случайных чисел с бесконечной точностью, вероятность получить с его помощью какое-либо рациональное число[8]
(не какое-то конкретное, а вообще любое) тоже будет равна нулю. Драматизма этому факту придает то обстоятельство, что множество рациональных чисел не просто бесконечно, оноЕсли бы пифагорейцам удалось заглянуть в науку будущего, они пришли бы в недоумение, обнаружив, что верные и понятные рациональные числа — как им казалось, единственно возможные, на которых строилась вся их математика, — практически не встречаются на числовой оси! Вот уж точно — закон подлости! И если в быту мы чаще всего встречаем целые числа или несложные дроби, то даже в повседневной физике или геометрии «работает» большое количество иррациональных зависимостей (корни различных степеней) и трансцендентных функций (синусы, логарифмы и т. п.), делающее рациональные и целые решения редкостью. Среди фундаментальных физических констант нет «фундаментально» рациональных чисел. Некоторые из них — такие как скорость света, заряд электрона, постоянные Планка и Больцмана[9]
— приняты рациональными или целыми по соглашению. Просто единицы измерения подобраны так, чтобы фиксировать количество значимых цифр в этих константах, поэтому в таблицах такие величины указаны «точно», но эта точность в известном смысле искусственная, принятая для удобства.Если кто-то терпеливо проведет тысячу экспериментов с монеткой и радостно скажет вам, что у него получилось столько же выпадений «орлов», сколько и «решек», можете смело выразить сомнение или поздравить его с редкой удачей. Хоть бросание монетки — дискретный случайный процесс, по мере накопления статистики мощность вероятностного пространства будет расти, а мера события «
Мы еще вернемся к этим рассуждениям в одной из следующих глав, когда зададимся вопросом о том, насколько каждый из нас может считать себя нормальным.
О коварстве географических карт
Я хочу вернуться к толкованию вероятности и продемонстрировать эквивалентность ее колмогоровского и частотного определений. Мы раскроем загадку одного закона подлости, который не вошел в классические книги по мерфологии, но хорошо известен туристам, геологам и всем, кто пользуется топографическими картами:
Раскроем карту, чтобы найти на ней какой-нибудь объект. Предположим, нас одинаково часто интересуют объекты, расположенные на всех участках карты. Причем не объекты сами по себе как точки. Весь смысл использования карты состоит в обозрении
Рис. 2.3.
Серым выделены «нехорошие» участки. Отдельно показан участок с полупроцентной площадью для карты размерами 40×50 см, она имеет размер, слегка превышающий 3 см