Широко распространено понимание вероятности как частоты, с которой могут происходить события при многократных испытаниях или наблюдениях. Это представление согласуется с нашим повседневным опытом, но оставляет ряд сложных вопросов. Например, когда байесовский спам-фильтр выдает следующий результат: «Вероятность того, что сообщение „Заработать в интернете может любой! Жми! Узнай как!“
— спам, составляет 82 %», с частотой чего это можно связать? Если протестировать сообщение несколько раз, ничего не изменится; можете переставить слова, но результат останется тем же, а при изменении текста сообщения мы переходим к другой задаче. О какой же вероятности речь? Другой пример. Камчатские сейсмологи каждый год публикуют прогноз сейсмической опасности — вероятности сильного землетрясения в ближайшее время. Однако и здесь неясно, можно ли дать частотное толкование такого прогноза. В главе 6 мы разберемся с этим примером, а сейчас приведем определение вероятности, данное замечательным русским математиком Андреем Николаевичем Колмогоровым в 1930-е. Оно может показаться далеким от интуитивного представления и чересчур сложным. Но интуиция — неважный помощник в рассуждениях на такую абстрактную тему, как вероятность. Сформулированное Колмогоровым определение — надежный и универсальный инструмент, применимый к очень широкому кругу задач. В следующих главах мы будем неоднократно обращаться к нему, вырабатывая правильную интуицию у читателя.Современная теория вероятностей базируется на понятии вероятностного пространства. Его определение потребует ввести несколько новых терминов.
Элементарное событие
— результат какого-либо эксперимента или наблюдения за системой, имеющей случайное поведение. При этом один эксперимент порождает ровно одно событие. Например: «выпадение тройки при бросании игральной кости», «наблюдение интервала в 7 минут между автомобилями в дорожном потоке».Множество всех таких событий называют пространством элементарных событий. Ну что же, мы теперь готовы познакомиться с тем, как в математике определяется вероятность.
Вероятностным пространством
называется тройка, включающая пространство элементарных событий Ω, сигма-алгебру его подмножеств F и функцию P, называемую вероятностью, которая каждому элементу из F ставит в соответствие неотрицательное число, причем:1) P
(∅) = 0;2) P
(Ω) = 1;3) функция P
сигма-аддитивна, то есть вероятность счетного объединения непересекающихся событий равна сумме их вероятностей: P(∪iAi) = ΣiP(Ai).Как видите, вероятность — сигма-аддитивная мера на пространстве элементарных событий, имеющем меру 1. Соответственно, описанные выше свойства меры на языке вероятностей примут следующий вид.
Если из события A
следует событие B, то вероятность A не больше, чем вероятность B: если A ⊆ B, то P(A) ≤ P(B).Если из события A
следует событие B, то вероятность того, что наступит B, но не наступит A, равна разности вероятностей: если A ⊆ B, то P(B\A) = P(B) — P(A). В частности, если B = Ω, то получаем формулу для вероятности противоположного события. Если событие, означающее, что событие A не произошло, обозначить то Для любых A
и B верно P(A∪B) = P(A) + P(B) − P(A∩B).Рассмотрим простейший пример вероятностного пространства. Пусть мы бросаем монету, то есть в нашем эксперименте возможны всего два исхода, и Ω = {О (орел), Р (решка)}. Сигма-алгебра — множество всех подмножеств Ω, и в ней всего четыре элемента: {∅, {О},{Р},{О, Р}}. Она включает невозможное событие — отсутствие какого-либо результата (∅), а также тривиальное — получение какого-либо из возможных результатов {О, Р}, то есть все множество элементарных событий.
Если монета честная, то зададим такую вероятность: P(О) = 50 %, P(Р) = 50 %. Кроме того, P(∅) = 0,P(О, Р) = 100 %. Очевидно, что свойство сигма-аддитивности (которая в данном случае сводится к аддитивности) выполняется. Именно поэтому у нас получилось вероятностное пространство.
Дискретным случайным величинам соответствуют конечные или счетные множества, в них естественной (считающей) мерой оказывается обыкновенный подсчет количества элементов. Соответственно, вероятность в дискретном вероятностном пространстве получают с помощью комбинаторного подсчета вариантов, знакомого каждому студенту или интересующемуся математикой школьнику. Для непрерывных случайных величин вероятность как мера больше похожа на длину или площадь. Точное определение случайной величины
мы дадим в следующей главе, пока же положимся на ее интуитивное понимание как величины, которую можно измерить или наблюдать. Но повторные измерения могут привести к иным результатам, заранее не известным.