Начнем разбираться с простенькой монеткой и посмотрим, каким может быть источник неопределенности в эксперименте с подбрасыванием. Задача подробно рассматривалась в 1986 году Джозефом Келлером[7]
, и здесь мы приведем простое объяснение возникновению неопределенности в этом нехитром процессе, основанное на рассуждениях из его статьи. В самом первом приближении то, какой стороной упадет монета, зависит от времени ее полетаРис. 2.1.
Диаграмма, показывающая четность количества оборотов монеты в полете. Прямоугольником показана область, в которой чаще всего происходит процесс гадания на монетке при подбрасывании рукойС помощью этой полосатой диаграммы можно выяснить, каким будет результат подбрасывания монетки, закрученной на известное число оборотов в секунду и пойманной через известное время после броска. Если попадаем в белую полоску, выпадет та же сторона, что была сверху при броске; если в серую — обратная. Линии равного числа оборотов представляют собой гиперболы; видно, что по мере увеличения числа оборотов чередование областей становится все более частым, а сами области оказываются тоньше. Человеческая рука несовершенна, и очень небольшой разброс начальных значений перекрывает сразу много областей, делая исход непредсказуемым. В диапазоне действия руки (прямоугольник на диаграмме) смещения на 5 % достаточно для того, чтобы перескочить с белой полоски на серую. Остается вопрос: как из этого построения следует «честность» настоящей монеты? Как из такой диаграммы получить
Чтобы перевести наши рассуждения на язык вероятностей, окунемся в математику, которую не проходят в школе. И хотя от нее ожидают чего-то сложного, сейчас она упростит дело и поможет лучше понять, о чем мы рассуждаем.
Во введении я говорил, что математики изучают не числа или геометрические фигуры, как может показаться после изучения школьного курса. Они работают со сложными структурами (абстрактными алгебрами, полукольцами, полями, моноидами, топологическими пространствами и прочей абстрактной всячиной), описывают их, вроде бы совершенно не привязываясь к практике, корректно определяют, изучают их свойства, доказывают теоремы. А потом они оттачивают мастерство в поиске подобных структур в самых разных явлениях природы и областях человеческих знаний, совершая удивительно полезные прорывы, в том числе в чисто прикладных областях. Сейчас мы рассмотрим, как строится базис теории вероятностей, основанный на достаточно абстрактном понятии
Мы описали механику монетки и получили области, описывающие множества решений с определенными свойствами. Области — плоские фигуры. Как правильно перейти от них к вероятностям? Нужно измерять наши области, и мы естественным путем приходим к их площади. Площадь —
В математике есть целый раздел, который называется
Хотя наша книга не учебник, на этом стоит остановиться, чтобы взглянуть на понятия теории вероятностей как бы с «высоты птичьего полета» и почувствовать вкус «большой» математики. Я прошу читателя не пугаться, если что-то в приводимых ниже определениях покажется непонятным. Если язык математики вам незнаком, воспринимайте это как отрывок текста «в оригинале» на незнакомом вам языке. Он может быть не полностью понятен, но в нем нет искажений «переводчика» и не нарушена целостность. При изучении истории, литературы или иностранных языков необходимо работать или хотя бы знакомиться с оригинальными текстами и полными цитатами. Язык математики тоже требует знакомства с «оригиналом», поскольку в текстах определений и теорем ничего ни прибавить, ни убавить без потерь не получится. Попытки сократить текст «для ясности» порой приводят к серьезным неточностям и вовсе к ошибкам. Итак, вот как звучит определение меры.
Пусть имеется множество
Набор его подмножеств F называется алгеброй, если для F верно:
1) пустое множество принадлежит F: ∅ ∈ F;
2) если множество