Приведу еще один пример, который, возможно, примирит кого-то с диктатурой в математике. Помните школьное правило: «на ноль делить нельзя»? А почему, кто это запретил? Кроме того, теперь мы достаточно грамотны, чтобы уточнить вопрос: что такое «ноль», на который нельзя делить? Тот ли, который оказывается нейтральным элементом при сложении, или речь о каком-то ином объекте? Сразу скажу: да, тот самый, поскольку он, по определению группы, единственный[19]
. Более или менее искушенный в математике читатель скажет, что в пределах алгебраической структуры, которая называется полем чисел (рациональных или вещественных, именно их мы проходим в школе), не существует делителей нейтрального элемента по сложению, они просто не содержатся во множестве этих чисел. Можно добавить, что при умножении на ноль — как на поглощающий элемент для этой операции — мы полностью теряем информацию о втором множителе, подобно тому, как тень на стене не содержит полной информации о форме или цвете трехмерного объекта, отбрасывающего ее. Так что произвести операцию, обратную умножению, то есть деление, у нас в этом случае не получится.Но можно ведь искусственно дополнить множество чисел специальными элементами — делителями нуля. Дополнили же когда-то множество рациональных чисел
, привычных нам дробей, иррациональными, такими как √2, — чтобы можно было рассуждать о длине диагонали единичного квадрата или возведении в рациональные степени. Более того, в шестом классе, когда мы эти корни вводили, нас учили, что квадратный корень из отрицательного числа взять невозможно. Но потом, в десятом классе, множество вещественных чисел расширили до комплексных, дополнив его мнимой единицей. И вот, пожалуйста, невозможное стало возможным. Так в чем проблема с делением на ноль?Дело в том, что и рациональные, и вещественные, и комплексные числа построены так, что все они образуют поля, при этом вся арифметика в них согласована. Но если искусственно ввести нетривиальные делители нуля, то получится иная арифметика, своеобразная и не согласующаяся с привычной нам со школы алгеброй полей. Алгебраическая структура, на которой определены сложение и умножение, а также своеобразное деление для всех элементов, включая ноль, называется колесом
[20]. И деление в этой структуре определяется не как бинарная операция x/y, обратная умножению, а как унарный оператор /y, подобный y–1. Таким образом, деление определяется как произведение x∙/y. Кроме того, алгебраическая система дополняется символами /0 и 0/0, которые иногда обозначаются как ∞ и ⊥. Они имеют особенные свойства и не равны ни одному другому элементу системы.Непротиворечивая система аксиом колеса кроме коммутативности, ассоциативности сложения с умножением содержит следующие правила:
0∙0 = 0
//x
= x/(xy
) = /y/xxz
+ yz = (x + y)z + 0z(x
+ yz)/y = x/y + z + 0y(x
+ 0y)z = xz + 0y/(x
+ 0y) = /x + 0y0/0 + x
= 0/0Из этих аксиом неизбежно следует, что в общем случае:
0x
≠ 0, x — x ≠ 0, x/x ≠ 1Увы, групповые свойства сложения в такой системе нарушаются, поскольку не для всех элементов x
выполняется тождество x + 0 = x.Так что «просто добавить» делители нуля и обратный ему элемент не получится, нужно перестраивать всю систему ради ее непротиворечивости. Подобные трудности возникнут и при попытке искусственно ввести вторую мнимую единицу: согласованную алгебру с двумя единицами создать не получится, а вот с тремя все работает. Так строится кольцо кватернионов
. Они широко используются для моделирования вращений в трехмерном пространстве, например в компьютерных играх и симуляциях реальности. Увеличивая число дополнительных мнимых единиц, мы в следующий раз получим «хорошую» самосогласованную алгебру, когда их будет семь; она называется алгеброй октонионов. На нее возлагаются надежды как на способ соединить квантовую теорию и гравитацию, получив «священный Грааль» физики: Теорию Всего. А больше можно? Формально да: при 15 дополнительных единицах строится алгебра седенионов. И — о чудо! — в алгебре седенионов уже есть нетривиальные делители нуля, но сама она, похоже, теряет ценность как алгебраическая система! Так что мы не можем просто придумать что-то новое в математике, если оно как-то не согласуется с существующими, повсеместно используемыми понятиями. Допустимо построить непротиворечивую систему, изучить ее свойства и пользоваться ими для моделирования либо реального мира, либо других систем.