Читаем Вероятности и неприятности. Математика повседневной жизни полностью

Разберем еще один пример ошибочной интерпретации статистических данных. В июне 2011 года был выпущен публичный отчет о росте уровня занятости в США, он составил 18 тысяч новых работников по всей стране. В газетах штата Висконсин об этом была опубликована статья, в которой отмечалось, что более половины роста (9,8 тысячи человек) приходится именно на этот штат. Статья завершалась хвалебным отзывом о плодотворной работе правительства штата и позже с удовольствием цитировалась политиками и чиновниками. Притом что обе цифры верны и подтасовок в них нет, штат Висконсин никак не может претендовать на доминирующий вклад в общий рост уровня занятости. В том же году в штате Массачусетс появилось 10,4 тысячи новых рабочих мест (58 % от общей цифры), а в Калифорнии — 28,8 тысячи (160 %). Я полагаю, читатель начинает догадываться, что приводимые тут проценты не имеют большого смысла, поскольку в этом же году в ряде штатов, например в Миссури или Вирджинии, произошло сокращение рабочих мест. Таким образом, 18 тысяч — сумма всех положительных и отрицательных изменений.

Где заканчивается свобода в математике?

Здесь стоит ненадолго остановиться. Мы уже достаточно подкованы в математике, чтобы не просто с умным видом поиздеваться над ошибкой журналистов и доверчивостью чиновников, а разобраться в том, что именно произошло. Речь в статье шла о долях, при этом использовались суммы величин, которые могут быть и отрицательными. Что же здесь не так? Ведь долю, то есть рациональное число, можно вычислить от величины любого знака. Здесь нам опять пригодится понятие меры.

Доли, или удельный вклад, имеет смысл вычислять от величины, относящейся к мерам — аддитивной и неотрицательной. Говоря в предыдущей главе о мере как функции над множествами, мы упоминали требование ее неотрицательности, но не заостряли на нем внимание. Само понятие меры появилось как расширение таких категорий, как количество, длина или объем, а эти величины, очевидно, не могут быть отрицательными. Но что случится с нашим определением, если мы разрешим мере быть отрицательной? Может, тем самым мы расширим это понятие и оно станет еще полезнее? Расширили же мы понятие вероятности, введя условную вероятность. Бытует мнение (особенно среди «практиков», инженеров и программистов), что математики изобретают аксиомы и изменяют определения по мере необходимости. Что это вопрос практичности, договоренностей либо даже вкуса. Нет, ребята, математика так не работает.

Приведу два примера, из которых станет ясно, что аксиомы не придумываются. В главе 1, рассматривая петли на наушниках, мы указали, что они образуют группу с операцией сложения, соответствующей нанизыванию их на одну веревку. Для любой группы должны выполняться четыре аксиомы: замкнутость операции группового сложения, ее ассоциативность, наличие единственного нуля (нейтрального элемента), наконец, наличие обратного элемента. А почему мы ничего не говорим о коммутативности сложения (о том, что a + b = b + a)? Легко убедиться в том, что для наших петель, как и для чисел, это свойство выполняется. Кроме того, мы сразу сказали, что ноль — нейтральный элемент, независимо от порядка сложения с ним: (0 + a = a + 0 = a). Раз это должно работать для нуля, почему это не может работать для всех элементов группы?

Дело в том, что коммутативность не вытекает из четырех аксиом группы. Легко найти некоммутативную группу, классическим примером будут движения на плоскости. Если рассмотреть два движения: поворот относительно некой опорной точки и смещение вдоль какого-то вектора, — то результат будет зависеть от порядка этих движений. Убедиться в этом легко, перемещая лист бумаги по поверхности стола. Почему же сложение с нулем должно быть коммутативно? Это требование ассоциативности, а именно выполнения равенства: (a + 0) + b = a + (0 + b). Если бы сложение с нулем зависело от того, справа или слева он находится, то ассоциативность перестала бы работать для всех элементов группы. Эти два свойства не могут идти по отдельности. В то же время добавление свойства коммутативности согласуется с определением группы и расширяет ее до так называемой абелевой группы. Я помню, как был сначала озадачен, а потом восхищен тем, что коммутативность сложения для чисел не вводится искусственно, а может быть выведена из базового определения операции сложения.

Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги