Читаем Вероятности и неприятности. Математика повседневной жизни полностью

Естественное предположение, что наблюдаемые данные отражают реальное неизвестное распределение, оказывается верным. Например, гистограмма наблюдаемых величин приближается к истинной плотности распределения, если число наблюдений стремится к бесконечности.

Как закон больших чисел, так и центральная предельная теорема — не одно утверждение. Каждый из этих результатов представляет собой несколько разных теорем, охватывающих широкий спектр задач и условий. Мы познакомимся с их упрощенными формулировками, дающими хорошее представление об этих важных результатах.

Закон больших чисел — несколько разных теорем, утверждающих, что среднее значение наблюдений случайной величины при определенных условиях в том или ином смысле стремится к неизвестному математическому ожиданию этой величины. В простейшем случае он выглядит так. Пусть X1, X2, …, Xn — независимые одинаково распределенные случайные величины с математическим ожиданием a, Sn = X1 + X2 +…+ Xn. Тогда

Иными словами, среднее значение наблюдений стремится к математическому ожиданию. В частности, из закона больших чисел вытекает, что частота наблюдений какого-либо события стремится к вероятности этого события, то есть он прочно связывает «бытовое» частотное толкование вероятности и теоретическое как меры на вероятностном пространстве.

Центральная предельная теорема говорит о том, что при определенных условиях сумма независимых или слабо зависимых случайных величин, каждая из которых вносит небольшой вклад в общую сумму, имеет распределение, близкое к нормальному (гауссовскому). Теорема получила свое название за универсальность и важность, поскольку ее условия часто реализуются на практике. Например, многие биологические характеристики (рост человека или размах рук) подчиняются нормальному распределению, поскольку на них влияет множество факторов (скажем, действует много разных генов), вносящих по отдельности небольшой вклад. В простейшем случае теорема выглядит так.

Пусть опять X1, X2, …, Xn — независимые одинаково распределенные случайные величины с математическим ожиданием a и дисперсией σ2. Тогда

Здесь N(0,1) обозначает стандартное нормальное распределение со средним 0 и дисперсией 1.

Иными словами, при больших n сумма Sn близка к гауссовской случайной величине с математическим ожиданием (средним значением) na и дисперсией nσ2.

Эту теорему обычно доказывают, применяя методы функционального анализа. Но мы увидим позже, что ее можно понять и даже расширить, введя понятие энтропии как меры вероятности состояния системы: нормальное распределение имеет наибольшую энтропию при наименьшем числе ограничений. В этом смысле оно оптимально при описании неизвестной случайной величины либо случайной величины, являющейся суммой многих других величин, распределение которых тоже неизвестно.

Эти два закона лежат в основе количественных оценок достоверности наших знаний, основанных на наблюдениях. Здесь речь о статистическом подтверждении или опровержении предположения, которое можно сделать из каких-то общих оснований, и математической модели. Это может показаться странным, но сама по себе статистика не производит новых знаний. Набор фактов превращается в знание лишь после построения связей между фактами, образующих определенную структуру. Именно эти структуры и связи позволяют делать предсказания и выдвигать общие предположения, которые основаны на чем-то, выходящем за пределы статистики. Они называются гипотезами. Самое время вспомнить один из законов мерфологии — постулат Персига:

Число разумных гипотез, объясняющих любое данное явление, бесконечно.

Задача математической статистики — ограничить это бесконечное число, а вернее, свести все гипотезы к одной, причем вовсе не обязательно верной. Итак, у нас есть случайная величина X, распределение P которой неизвестно (иногда совсем, иногда частично). Гипотеза — любое предположение о P. Простая гипотеза — предположение, что P — какое-то конкретное известное распределение. Сложная гипотеза — предположение, что P принадлежит целому классу распределений. Как правило, исследователь проверяет простую гипотезу.

Эта исходная гипотеза обычно называется нулевой. Что может выступить в таком качестве? В определенном смысле — что угодно, любое утверждение об исследуемой системе. Например, если у нас есть данные о росте призывников, мы можем проверить гипотезу, что неизвестный средний рост равен 1,76 м (или 2,10 м). Если у нас есть данные по количеству аистов и новорожденных, то мы можем проверить гипотезу, что эти две величины независимы. Если у нас есть два больших литературных произведения, мы можем проверять гипотезу, что их написал один автор, построив какую-то математическую модель.

Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги