Но недовольство у нас вызывает не пятилетняя и даже не годовая статистика: человеческая память не такая долгая. Обидно, когда дождливые дни выпадают на выходные три или четыре раза подряд! Как часто это может случаться? Особенно если вспомнить, что гадкая погода не приходит одна. Задачу можно сформулировать так: «Какова вероятность того, что n
выходных подряд окажутся дождливыми?» В главе 6 мы близко познакомимся с так называемыми случайными процессами как с моделями случайных последовательностей событий во времени. Один из них, особенно важный и вместе с тем особенно простой, называется пуассоновским. Его характерная особенность — независимость момента наступления следующего события от предыдущих, уже произошедших, а также то, что временные интервалы между событиями подчиняются экспоненциальному распределению. Такая последовательность характеризуется одним параметром, который называют интенсивностью: числом событий, в среднем случающихся за единичный интервал времени. Разумно предположить, что непогожие дни образуют пуассоновский поток с интенсивностью 1/4. Это полностью соответствует нашему исходному положению, что в среднем четверть дней любого периода будет непогожей. Если рассматривать только выходные, процесс не должен изменить интенсивность, и из всех выходных непогожие дни должны составлять в среднем тоже четверть. Итак, выдвигаем нулевую гипотезу: ненастья формируют последовательность согласно пуассоновскому процессу с известным параметром, а значит, интервалы между пуассоновскими событиями описываются экспоненциальным распределением. Нас интересуют дискретные интервалы: 0, 1, 2, 3 дня и т. д., — поэтому мы можем воспользоваться дискретным аналогом экспоненциального распределения — геометрическим распределением с параметром 1/4. На рисунке 4.5 показано, что у нас получилось. Очевидно: предположение о том, что мы наблюдаем пуассоновский процесс, нет резона отвергать.
Рис. 4.5.
Теоретическое и наблюдаемое распределение длины цепочек неудавшихся выходных. Тонкой линией показаны допустимые отклонения при имеющемся количестве наблюдений
Можно задаться таким вопросом: сколько лет нужно вести наблюдения, чтобы замеченную нами разницу в 11 дней можно было бы уверенно подтвердить или отвергнуть как случайное отклонение? Это легко посчитать: наблюдаемая вероятность 141/459 = 0,307 отличается от ожидаемой 2/7 = 0,286 на 0,02. Для фиксации различия в сотых требуется абсолютная погрешность, не превышающая 0,005, что составляет 1,75 % от измеряемой величины. Отсюда получаем необходимый объем выборки n
≥ (4∙5/7)/(0,01752∙2/7) ≈ 32 000 дождливых дней. Это потребует около 4∙32000/365 ≈ 360 лет непрерывных метеорологических наблюдений, ведь только каждый четвертый день идет дождь или снег. Увы, данных за такой срок нет. Это даже больше, чем время, которое Камчатка находится в составе России, поэтому шансов выяснить, как обстоят дела «на самом деле», у меня нет. Особенно если учесть, что за это время климат успел измениться разительно — из малого ледникового периода природа выходит в очередной оптимум.Как же австралийским исследователям удалось зафиксировать отклонение температуры в доли градуса и почему имеет смысл всерьез рассматривать это исследование? Дело в том, что они использовали часовые данные температуры, которые не были «прорежены» каким-либо случайным процессом. Таким образом, за 30 лет метеонаблюдений удалось накопить более четверти миллиона отсчетов с нескольких датчиков, что позволяет уменьшить стандартное отклонение среднего в 500 раз по отношению к стандартному суточному отклонению температуры. Этого вполне достаточно, чтобы говорить о точности в десятые доли градуса. Кроме того, авторы использовали еще один красивый метод, подтверждающий наличие временного цикла: случайное перемешивание временно
го ряда. Такое перемешивание сохраняет статистические свойства, такие как интенсивность потока событий во времени, однако «стирает» временные закономерности, делая процесс истинно пуассоновским. Сравнение множества синтетических рядов и экспериментального позволяет убедиться в том, что замеченные отклонения процесса от пуассоновского значимы. Таким же образом сейсмолог Александр Гусев показал, что землетрясения в каком-либо районе образуют своеобразный самоподобный поток со свойствами кластеризации[22]. Это означает, что землетрясения имеют обыкновение группироваться во времени, образуя весьма неприятные уплотнения потока. Позже выяснилось, что последовательность крупных вулканических извержений обладает тем же свойством.Беспорядок внутри самих чисел