Читаем Вероятности и неприятности. Математика повседневной жизни полностью

Но недовольство у нас вызывает не пятилетняя и даже не годовая статистика: человеческая память не такая долгая. Обидно, когда дождливые дни выпадают на выходные три или четыре раза подряд! Как часто это может случаться? Особенно если вспомнить, что гадкая погода не приходит одна. Задачу можно сформулировать так: «Какова вероятность того, что n выходных подряд окажутся дождливыми?» В главе 6 мы близко познакомимся с так называемыми случайными процессами как с моделями случайных последовательностей событий во времени. Один из них, особенно важный и вместе с тем особенно простой, называется пуассоновским. Его характерная особенность — независимость момента наступления следующего события от предыдущих, уже произошедших, а также то, что временные интервалы между событиями подчиняются экспоненциальному распределению. Такая последовательность характеризуется одним параметром, который называют интенсивностью: числом событий, в среднем случающихся за единичный интервал времени. Разумно предположить, что непогожие дни образуют пуассоновский поток с интенсивностью 1/4. Это полностью соответствует нашему исходному положению, что в среднем четверть дней любого периода будет непогожей. Если рассматривать только выходные, процесс не должен изменить интенсивность, и из всех выходных непогожие дни должны составлять в среднем тоже четверть. Итак, выдвигаем нулевую гипотезу: ненастья формируют последовательность согласно пуассоновскому процессу с известным параметром, а значит, интервалы между пуассоновскими событиями описываются экспоненциальным распределением. Нас интересуют дискретные интервалы: 0, 1, 2, 3 дня и т. д., — поэтому мы можем воспользоваться дискретным аналогом экспоненциального распределения — геометрическим распределением с параметром 1/4. На рисунке 4.5 показано, что у нас получилось. Очевидно: предположение о том, что мы наблюдаем пуассоновский процесс, нет резона отвергать.


Рис. 4.5. Теоретическое и наблюдаемое распределение длины цепочек неудавшихся выходных. Тонкой линией показаны допустимые отклонения при имеющемся количестве наблюдений


Можно задаться таким вопросом: сколько лет нужно вести наблюдения, чтобы замеченную нами разницу в 11 дней можно было бы уверенно подтвердить или отвергнуть как случайное отклонение? Это легко посчитать: наблюдаемая вероятность 141/459 = 0,307 отличается от ожидаемой 2/7 = 0,286 на 0,02. Для фиксации различия в сотых требуется абсолютная погрешность, не превышающая 0,005, что составляет 1,75 % от измеряемой величины. Отсюда получаем необходимый объем выборки n ≥ (4∙5/7)/(0,01752∙2/7) ≈ 32 000 дождливых дней. Это потребует около 4∙32000/365 ≈ 360 лет непрерывных метеорологических наблюдений, ведь только каждый четвертый день идет дождь или снег. Увы, данных за такой срок нет. Это даже больше, чем время, которое Камчатка находится в составе России, поэтому шансов выяснить, как обстоят дела «на самом деле», у меня нет. Особенно если учесть, что за это время климат успел измениться разительно — из малого ледникового периода природа выходит в очередной оптимум.

Как же австралийским исследователям удалось зафиксировать отклонение температуры в доли градуса и почему имеет смысл всерьез рассматривать это исследование? Дело в том, что они использовали часовые данные температуры, которые не были «прорежены» каким-либо случайным процессом. Таким образом, за 30 лет метеонаблюдений удалось накопить более четверти миллиона отсчетов с нескольких датчиков, что позволяет уменьшить стандартное отклонение среднего в 500 раз по отношению к стандартному суточному отклонению температуры. Этого вполне достаточно, чтобы говорить о точности в десятые доли градуса. Кроме того, авторы использовали еще один красивый метод, подтверждающий наличие временного цикла: случайное перемешивание временного ряда. Такое перемешивание сохраняет статистические свойства, такие как интенсивность потока событий во времени, однако «стирает» временные закономерности, делая процесс истинно пуассоновским. Сравнение множества синтетических рядов и экспериментального позволяет убедиться в том, что замеченные отклонения процесса от пуассоновского значимы. Таким же образом сейсмолог Александр Гусев показал, что землетрясения в каком-либо районе образуют своеобразный самоподобный поток со свойствами кластеризации[22]. Это означает, что землетрясения имеют обыкновение группироваться во времени, образуя весьма неприятные уплотнения потока. Позже выяснилось, что последовательность крупных вулканических извержений обладает тем же свойством.

Беспорядок внутри самих чисел

Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги