Читаем Вид с высоты полностью

Большую часть астероидов следует искать между орбитами Марса и Юпитера, причем астероиды обычно не отходят от плоскости эклиптики больше чем на 30 градусов в ту или другую сторону. Объем пространства между этими орбитами и в пределах таких углов наклона к эклиптике равен 820 000 000 000 000 000 000 000 000 (8,2 · 1026) кубических километров! Если мы для верности скажем, что общее число астероидов равно 200 тысячам, то на каждые 4,1 · 1021 кубических километров придется один астероид.

Это значит, что среднее расстояние между астероидами составляет примерно 10 миллионов километров. Возможно, для отдельных более густо населенных астероидами районов мы можем сократить это расстояние до 1 миллиона километров. Если учесть, что диаметр большинства астероидов не превышает одного километра, то станет ясно, что с одного астероида другой, по всей вероятности, невооруженным глазом и не увидишь. Отпускник будет проводить время в одиночестве, а разведчику геологу придется поломать голову над тем, как добраться до другого астероида.

Наверно, астронавты будущего при полете к дальним планетам будут просто проскакивать зону астероидов, так ничего и не увидев. И лишь в редких случаях совсем не страшный крик: «Виден астероид» — заставит космических туристов ринуться к иллюминаторам.


* * *


Не следует думать, что астероиды равномерно распределены по всей зоне малых планет (так называют в астрономии астероиды. — Ред.). Там имеются и скопления их, и практически пустые области.

И то и другое обусловлено сильным воздействием притяжения Юпитера на другие тела солнечной системы.

Когда астероид во время своего движения подходит к Юпитеру (который тоже движется по определенной орбите) на самое близкое расстояние, гравитационное воздействие Юпитера на астероид достигает максимума. При этом максимальном гравитационном воздействии смещение астероида с обычной орбиты (возмущение) тоже становится максимальным.

В обычных условиях смещение астероидов в сторону Юпитера происходит в различных точках их орбит. Из-за довольно большой вытянутости и значительных наклонений орбит большинства астероидов максимальное сближение их с Юпитером происходит в различных точках орбит, и иногда астероид смещается вперед, иногда — назад, иной раз — вниз, а иной раз — вверх. В конце концов эти возмущения компенсируют друг друга и астероиды движутся по орбитам, которые колеблются возле некой постоянной средней орбиты.

А что, если астероид движется вокруг Солнца в среднем на расстоянии 480 миллионов километров? Период обращения его будет равен тогда примерно 6 годам, а Юпитер делает полный оборот за 12 лет.

После максимального сближения Юпитера и астероида в какой-то момент времени Юпитер сделает за 12 лет один оборот вокруг Солнца, а астероид — два, и оба тела придут к тем же точкам максимального сближения. Это будет повторяться каждые 12 лет. После каждого нового оборота астероид будет смещаться в одном направлении. Возмущения перестанут компенсировать друг друга, а начнут складываться.

Но если Юпитер будет каждый раз подтягивать астероид к себе во время максимального сближения с ним, то астероид постепенно перейдет на орбиту, более далекую от Солнца, и год его удлинится. Период обращения уже не будет совпадать с периодом обращения Юпитера, и возмущения перестанут складываться. И наоборот, если бы астероид постепенно вышел на более близкую к Солнцу орбиту, год его стал бы короче, он не совпадал бы с годом Юпитера и возмущения опять-таки перестали бы складываться.

В общем ни один астероид не остается в той части зоны, где период обращения равен как раз половине периода обращения Юпитера. Любой астероид, который сначала находился там, смещается в ту или другую сторону: на прежней орбите он не остается.

То же самое можно сказать и о том районе зоны, в котором астероид имел бы период обращения 4 года, потому что через каждые три оборота он встречался бы с Юпитером в одном и том же месте. Если бы астероид имел период обращения 4,8 года, то эта же картина повторялась бы через каждые пять оборотов и так далее.

Районы зоны астероидов, которые были «очищены» Юпитером, известны под названием «пустот Кирквуда». Их назвали так в честь американского астронома Даниэля Кирквуда, который в 1876 году обратил внимание на эти пустоты и объяснил причины их возникновения.


* * *


Именно этим объясняется, что у Сатурна несколько колец, а не одно.

Кольца были открыты голландским ученым Христианом Гюйгенсом в 1655 году. Ему казалось, что Сатурн окружен сплошным светлым кольцом, нигде не касающимся планеты. Однако в 1675 году французский астроном Джиованни Доменико Кассини (родом из Италии) заметил темную щель, делившую кольцо на широкую и светлую внутреннюю часть и на более узкую и менее светлую внешнюю часть. Эту щель шириной 4800 километров с тех пор стали называть «щелью Кассини».

Перейти на страницу:

Все книги серии В мире науки и техники

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука