Читаем Вид с высоты полностью

В 1850 году американский астроном Джордж Филлипс Бонд «подсмотрел» у Сатурна и третье кольцо, довольно тусклое и расположенное еще ближе к планете. Из-за своей тусклости оно было названо креповым кольцом. Креповое кольцо отделено от среднего, яркого кольца щелью шириной 1600 километров.

В 1859 году английский физик Джеймс Клерк Максвелл указал, что из-за тяготения планеты кольца не могут быть сплошными, а должны состоять из многочисленных отражающих свет обломков[16]; сплошными они кажутся только на далеком расстоянии. Частицы крепового кольца более разбросаны, чем частицы светлых колец, и потому оно выглядит таким тусклым. Теоретическое предсказание подтвердилось, когда в результате спектроскопических измерений было обнаружено, что периоды обращения разных точек колец отличаются друг от друга. Если бы кольца были сплошными, то период обращения был бы везде одинаков.

Внутренняя часть крепового кольца находится в каких-нибудь 10 000 километров от поверхности Сатурна. Эти частицы движутся по самым коротким орбитам и быстрее других. Они обращаются вокруг планеты примерно за 31/4 часа.

Во внешних кольцах частицы движутся медленнее и должны покрыть большие расстояния, а это означает, что период их обращения растет. На внешней стороне крайнего кольца период обращения частиц равен примерно 131/2 часа.

Если бы в щели Кассини были обнаружены частицы, оказалось бы, что они обращаются вокруг Сатурна за 11 часов с небольшим. Но в этом районе частиц нет, и потому он выделяется темной полоской на фоне окружающих его светлых колец.

В чем же тут дело?

Кроме системы колец, Сатурн обладает семьей из девяти более далеких спутников, и поле тяготения каждого из них возмущает движение частиц в кольцах. Ближайший из спутников Сатурна, Мимас, отстоит от внешнего края колец всего на 55 000 километров и имеет период обращения 221/2 часа. Период обращения второго спутника, Энцелада, равен 33 часам, а Тефии, третьего спутника, — 44 часам.

Любая частица в щели Кассини имела бы период обращения, равный 1/2 периода обращения Мимаса, 1/3 периода обращения Энцелада, 1/4 — Тефии. Не удивительно, что этот район совершенно пуст. В действительности спутники — малые тела и они могут возмущать движение еще меньших тел величиной с гальку; именно из таких «камешков» и состоят кольца. Если бы это было не так, то спутникам самим пришлось бы сойти со своих орбит.

Что же касается щели между креповым и внутренним светлым кольцами, то частицы в ней обращались бы вокруг Сатурна немногим менее чем за 7 часов, то есть за 1/3 периода обращения Мимаса и 1/6 периода обращения Тефии. В системе колец есть и более мелкие щели, существование которых объясняется теми же причинами.


* * *


Здесь я прерву повествование, чтобы рассказать об одном любопытном факте, — до сих пор я не встречал упоминаний о нем в литературе. В книгах по астрономии всегда отмечается, что Фобосу, ближайшему спутнику Марса, требуется меньше времени, чтобы обернуться вокруг Марса, чем самому Марсу, чтобы сделать поворот вокруг своей оси. Период вращения Марса вокруг своей оси равен 241/2 часа, а период обращения Фобоса — только 71/2 часа. Авторы книг по астрономии подчеркивали, что Фобос — это единственный спутник в солнечной системе, который ведет себя именно так.

Такое утверждение будет правильным, если мы примем во внимание только естественные спутники солидных размеров. Однако каждая частица в кольцах Сатурна, в сущности, тоже настоящий спутник, а раз это так, положение меняется. Период вращения Сатурна вокруг своей оси равен 101/2 часа, а каждая частица в креповом и во внутреннем светлом кольцах обращается вокруг Сатурна за меньшее время. Следовательно, спутник типа Фобоса далеко не единственный, у него есть бесчисленные миллионы собратьев.

Кроме того, почти всякий искусственный спутник, запущенный Советским Союзом и США, обращается вокруг Земли менее чем за 24 часа. Эти спутники относятся к той же категории, что и Фобос.


* * *


Гравитационные возмущения не только очищают от частиц некоторые районы, но и собирают эти частицы в одно место. Самый примечательный случай, — когда частицы собираются даже не в зоне, а буквально в одной точке.

Чтобы пояснить это, мне придется начать с самых истоков вопроса. Ньютоновский закон всемирного тяготения полностью решал «задачу двух тел» (по крайней мере в классической физике, которая игнорирует такие «новшества», как теория относительности и квантовая теория). Другими словами, если во Вселенной есть только два тела, положение и скорость которых известны, тогда на основе закона тяготения можно точно определить положение двух тел относительно друг друга в любой момент времени в прошлом или будущем.

Однако во Вселенной не два тела. Их бесчисленные триллионы. И следующий шаг к их учету состоит в решении «задачи трех тел». Как узнать положение трех тел во Вселенной относительно друг друга в любой момент времени, если известны их положения и направления движения в данный момент?

Перейти на страницу:

Все книги серии В мире науки и техники

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука