И вот тут-то астрономы оказались в затруднении. Никакого общего решения этой задачи нет, поэтому нет смысла в переходе к «задаче триллионов тел», существующих во Вселенной.
К счастью, это не остановило астрономов. Хотя в теории и есть изъян, ее все-таки можно использовать. Представьте, например, что ученым понадобилось бы рассчитать орбиту, по которой Земля обращается вокруг Солнца, чтобы затем вычислить положение этих тел по отношению друг к другу на следующий миллион лет. Если бы Солнце и Земля были единственными телами во Вселенной, то решить такую задачу было бы пустяковым делом. Но тут надо учитывать и притяжение Луны, Марса и других планет и — для полной точности — даже звезд.
К счастью, Солнце настолько больше любого другого небесного тела в солнечной системе и настолько ближе к Земле, чем любое другое тело с большой массой, что его тяготение «глушит» все остальные. Если при расчете орбиты Земли в качестве исходных данных брать только эти два тела, то ответ получается почти правильный. Кроме того, учитывается довольно слабое влияние ближайших тел и вносятся соответствующие поправки. Но чем точнее мы хотим рассчитать орбиту Земли, тем больше поправок нужно внести, чтобы учесть все более и более мелкие возмущения.
Принцип ясен, но на практике такие расчеты, разумеется, могут стать громоздкими и весьма утомительными. Формула, по которой более или менее точно рассчитывается движение Луны, занимает многие сотни страниц. Но она вполне пригодна для предсказаний времени и мест затмений с большой точностью и на большие сроки вперед.
Тем не менее астрономы не удовлетворены. Очень хорошо рассчитывать орбиты на основе последовательных приближений, но как прекрасно и изящно выглядела бы формула, которая позволила бы простым и общим путем связать влияние всех или по крайней мере трех тел.
Ближе всех подошел к этому идеалу французский астроном Жозеф Луи Лагранж. В 1772 году он действительно нашел некоторые весьма частные случаи, когда «задача трех тел» могла быть решена.
Представьте себе в пространстве два тела. Если масса тела
Имеется 5 точек, в которые можно поместить тело
Значение этих трех точек Лагранжа невелико. Любое тело, помещенное в одну из них, когда-нибудь хоть немного сдвинется из-за возмущения некоего тела, находящегося вне системы, и в результате воздействия притяжения
Две другие точки Лагранжа находятся не на прямой, соединяющей точки
Это две точки устойчивого равновесия. Если тело в любой из этих точек немного изменит положение из-за возмущений, то под воздействием притяжения
Конечно, если палка отклонится от вертикального положения слишком сильно, то, несмотря на старания сохранить ее равновесие, она все же упадет. Так и небесное тело: если оно отклонится от точки Лагранжа слишком далеко, то может навсегда уйти из системы.
В то время, когда Лагранж решил «задачу трех тел», еще не было известно ни одного объекта во Вселенной, расположенного в предполагаемых им точках. Однако в 1906 году немецкий астроном Макс Вольф обнаружил астероид, который он назвал Ахиллом, по имени греческого героя из «Илиады». Для астероида он находился необычайно далеко. В сущности, этот астероид двигался так же далеко от Солнца, как Юпитер.
Анализ его орбиты показал, что он всегда остается возле точки Лагранжа Л4 в системе Солнце — Юпитер. Таким образом, он почти все время на 780 миллионов километров опережает Юпитер в его движении вокруг Солнца.