Mimiviridae
и Marseilleviridae – новые семейства, пополнившие ряды ядерно-цитоплазматических крупных ДНК-содержащих вирусов, которые, вероятно, произошли от одного общего предка. Это положение подтверждается филогенетической реконструкцией гипотетического общего предкового вируса, в ходе которой были выделены и идентифицированы около сорока ядерных генов (Yutin et al., 2009). Эти гены по большей части расположены в некоторых ядерно-цитоплазматических крупных ДНК-содержащих вирусах и обеспечивают фундаментальные функции, лежащие в основе способа существования невероятно разнообразного царства вирусов. Размеры их геномов варьируют в широчайших пределах – от 0,2 до 1,25 миллиона пар оснований; при этом молекулы ДНК могут быть линейными или кольцевыми, а реплицироваться вирусы могут как в цитоплазме, так и в ядре клетки. Хозяевами могут быть самые разные организмы – от людей и птиц до насекомых, червей, водорослей, зоопланктона и других фагоцитирующих простейших. Тем не менее все эти вирусы должны реплицировать свою ДНК и окружать капсидами свои геномы, и они делают это с помощью одного и того же набора инструментов, закодированных набором ядерных генов; во всей группе ядерно-цитоплазматических крупных ДНК-содержащих вирусов только пять генов обнаруживаются у всех представителей этого класса вирусов. В этом отношении у них много общего с вирусами герпеса, у которых тоже есть основополагающий набор ядерных генов. Ядерные гены вирусов герпеса дополняются вспомогательными генами, которые сообщают функциям вируса многие дополнительные свойства, обеспечивающие взаимную адаптацию вирусов и хозяев. Эта особенность характерна и для поксвирусов, которые сами являются ядерно-цитоплазматическими крупными ДНК-содержащими вирусами, обладающими разнообразными генами, влияющими на проникновение вирусов в организмы разных хозяев и обеспечивающими взаимодействие вирусов с ними. Размер генома крупнейшего мимивируса приблизительно в десять раз превосходит геном мельчайшего поксвируса, который кодирует всего 130 генов. Таким образом, гигантские вирусы могут позволить себе роскошь в высшей степени гибкого генома с огромным адаптивным потенциалом.Первые ультраструктурные исследования инфицированных мимивирусом клеток, выполненные Раулем и его коллегами, привели к заключению о том, что репликация и сборка вируса происходят в ядре, как у вирусов герпеса (La Scala et al., 2003). Однако более детальное исследование выявило, что ядро оттесняется к периферии клетки и замещается новыми структурами. Вирус строит крупные «вирионные фабрики», и сборка вирусных частиц осуществляется в цитоплазме клетки (Suzan-Monti et al., 2007; Novoa et al., 2005). Эти временные структуры, построенные вирусом в клетке, создают рабочее пространство, куда инфицированная клетка поставляет необходимые ресурсы для экспрессии вирусных генов, репликации генома и морфогенеза вириона. Таких структур ученые в клетках до тех пор не видели. Эти структуры имели мало общего с вирусными фабриками, описанными при исследовании поведения других ядерно-цитоплазматических крупных ДНК-содержащих вирусов. Под электронным микроскопом мимивирусная фабрика напоминала связанную с клеточной мембраной органеллу и даже, пожалуй, бактерию. Некоторые ученые уподобили эту структуру воссозданию временно возникающего живого микроорганизма внутри инфицированной клетки. Семя сомнения было посеяно, и научное сообщество раскололось. В какое место эволюционной схемы надо помещать такие вирусы? Не являются ли они реликтами четвертого царства жизни? Дело не только в том, что геном мимивируса содержит генетический материал, который отсутствует у эукариот, бактерий и простейших; геном мимивируса кодирует белки, обладающие теми функциями, которые обеспечиваются при заражении другими вирусами генетического аппарата инфицированной клетки. Сложность генома мимивируса можно сравнить со сложностью генома многих живых клеток; похоже, что этот гигантский вирус существует в виде псевдо-микроорганизма, во всяком случае, в период цикла репликации внутри клетки-хозяина.