Эти наблюдения имели далеко идущие последствия для наших знаний об эволюции РНК-содержащих вирусов. Вид вируса не является уникальной генетической единицей: он представляет собой сложную популяцию разнообразных, но родственных генетических сущностей, которые действуют как единое целое и, размножаясь, распространяются, откуда и возникло наименование «квазивид». Естественный отбор и эволюция вирусных видов действуют не на единичный индивидуальный генотип, но на совокупность генотипов, представленных в пределах квазивида. Индивидуальные генотипы являются производными случайных мутационных изменений, вызванных ошибочным включением рибонуклеотидов в цепь РНК во время репликации вирусного генома. Эти изменения подвергаются давлению естественного отбора, которое помогает выделять и отбирать относительно пригодные из индивидуальных компонентов и, таким образом, формировать генетический состав квазивида. Наша концепция «дикого типа» – это концепция отдельного, единичного вида, который обычно обладает геномом с «консенсусной последовательностью» и фенотипом, наилучшим образом приспособленным к преобладающим условиям окружающей среды. Понятие о диком типе сохраняет свою ценность для вирусологии, но дикий тип лучше считать неким центром тяжести квазивида, геном дикого типа может существовать в пределах квазивида, как нечто мимолетное и эфемерное, а в большинстве случаев он просто отсутствует. Надо особо подчеркнуть, что концепция квазивида ни в коем случае не отменяет дарвиновскую теорию эволюции, на которой она зиждется и дальнейшим развитием которой является.
Как мы скоро увидим, РНК-содержащие вирусы образуют квазивиды для осуществления быстрой адаптации, повышения шансов на распространение и стимуляции патогенеза в сложной физиологической среде клеток, тканей и органов, составляющих многоклеточные организмы. Основой формирования квазивидов, их движущей силой являются склонные к ошибкам механизмы репликации РНК-содержащих вирусов, которые служат генератором генетического разнообразия. Скорость генетической диверсификации, скорость, с которой ошибки включаются в новые геномы, должна тонко регулироваться эволюцией. Манфред Эйген, лауреат Нобелевской премии по химии, который позднее переключился на изучение теории информации и молекулярной эволюции, написал статью в 1993 году опубликованную в «Scientific American», где доступно и образно изложил свойства квазивидов. Автор говорил о пространстве последовательностей как о концепции, позволяющей картировать разнообразные нуклеотидные последовательности в многомерной матрице, названной пространством последовательностей Хеннинга. Если количество ошибок в репликации нуклеотидных последовательностей будет так высока, что ни один из дочерних вирусов не повторит родительскую последовательность, то популяция последовательностей равномерно заполнит все их пространство. Автор уподобил это молекулам газа, которые равномерно рассеиваются по объему контейнера, в который этот газ заключен. Строго говоря, это не будет репликацией, так как в этом случае целостность вида вообще перестанет существовать, даже при наличии давления отбора, который оставит только самые приспособленные генотипы. С другой стороны, снижение числа ошибок приведет к снижению дисперсии геномных последовательностей, как пишет Эйген: «При некотором критическом уровне ошибок действие отбора на популяцию разительно изменится: расширяющая сила мутаций придет в равновесие с ограничивающей силой давления отбора. Диффузный газ родственных последовательностей внезапно сконденсируется в конечный, но достаточно обширный оформленный объем» (Eigen, 1993). Это облако последовательностей со своим центром тяжести в области исходной последовательности станет самоподдерживающейся популяцией, которая будет несовершенно воспроизводиться, но поддерживать собственную цельность как единое целое.