Читаем Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности полностью

С 1950-х гг. перед исследователями ИИ стояла цель научить машину распознавать язык человека. В эту сферу, называемую обработкой естественного языка, входят такие варианты использования технологий, как распознавание речи, текстовый анализ, перевод, генерация текста и решение других языковых задач. ОЕЯ использовали 53 % компаний, участвовавших в опросе об осведомленности о когнитивных технологиях. Есть два основных подхода к ОЕЯ – статистический и семантический. Статистическая ОЕЯ основана на машинном обучении и сегодня совершенствуется быстрее семантической. Она требует большого корпуса, или совокупности, текстов, на которых учится. Например, для перевода требуется большой объем переведенных текстов, статистически анализируя которые система узнает, что испанское и португальское слово amor находится в тесной статистической взаимосвязи с английским словом love. Этот метод использует «грубую силу», однако часто он довольно эффективен.

До последнего десятилетия внимание уделялось исключительно семантической ОЕЯ, и она демонстрирует умеренную эффективность, если система удачно натренирована на распознавание слов, синтаксиса и концептуальных связей. Однако обучение языку и инженерия знаний (которая часто предполагает создание графа знаний в определенной области) требуют много времени и сил. Для этого необходима разработка онтологий или моделей отношений между словами и фразами. Хотя создавать семантические модели ОЕЯ нелегко, сегодня этим занимаются несколько систем интеллектуальных агентов.

Производительность систем ОЕЯ следует измерять двумя способами. Первый – оценивать процент произнесенных слов, которые система понимает. Этот показатель возрастает при использовании технологии глубокого обучения и часто превышает 95 %. Второй способ – проверять, на какое количество различных типов вопросов система в состоянии ответить, а также сколько задач она может решить. Как правило, для этого необходима семантическая ОЕЯ, а поскольку в этой сфере нет серьезных технических прорывов, системы, которые отвечают на вопросы или решают конкретные задачи, контекстно обусловлены и требуют тренировки. Компьютер IBM Watson прекрасно справился с ответами на вопросы Jeopardy! но не сможет отвечать на вопросы Wheel of Fortune, если его не тренировать, а эти тренировки часто весьма трудоемки. Возможно, в будущем для ответов на вопросы будет применяться метод глубокого обучения, однако пока этого еще не делали.

Экспертные системы на основе правил

В 1980-х гг. экспертные системы на основе наборов правил «если – то» были доминирующей технологией ИИ и долгое время широко использовались в коммерческих целях. Сегодня их обычно не считают последним словом техники, но проведенный в 2017 г. опрос Deloitte об осведомленности о когнитивных технологиях показал, что их по-прежнему используют 49 % американских компаний, работающих с ИИ.

Экспертные системы требуют, чтобы эксперты и инженеры знаний разработали набор правил для конкретной области знаний. Они широко распространены, к примеру, в страховом андеррайтинге и банковском кредитном андеррайтинге, но также используются в нетрадиционных областях вроде обжарки кофе в Folgers или приготовлении супов в Campbell's. Они неплохо работают и просты для понимания. Однако, если количество правил велико (обычно больше нескольких сотен) и правила начинают конфликтовать друг с другом, системы не справляются с задачами. Кроме того, если меняется область знаний, приходится менять и все правила, а это сложно и трудоемко.

Системы на основе правил не слишком усовершенствовались с момента своего раннего расцвета, но представители активно применяющих их отраслей (вроде страхования и банковского дела) надеются, что вскоре появится новое поколение технологий на основе правил. Исследователи и поставщики технологий уже обсуждают возможность создания «адаптивных машин обработки правил», которые будут постоянно модифицировать правила на основе новых данных, или комбинаций машин обработки правил с машинным обучением (но все это пока не получило широкого распространения).

Физические роботы

Перейти на страницу:

Похожие книги

IT-рекрутмент. Как найти лучших специалистов, когда все вокруг горит
IT-рекрутмент. Как найти лучших специалистов, когда все вокруг горит

Специалисты в области информационных технологий сегодня нарасхват, и потребность в них в ближайшие годы будет только расти. Поиск разработчиков, тестировщиков, аналитиков и администраторов для компаний самых разных профилей — нетривиальная задача даже для опытных рекрутеров. Достойные специалисты требуют особого подхода: рекрутеру нужно ориентироваться в отрасли, обладать базовыми знаниями в IT-сфере, иначе выстраивать коммуникацию. Как научиться говорить с айтишниками на одном языке, пишет Егор Яценко — один из самых авторитетных российских IT-рекрутеров, энтузиаст и популяризатор новой профессии. Он дружелюбно и иронично объясняет, как быстро искать и убеждать кандидатов, рассказывает о секретах эффективного рекрутинга и закономерностях, которые узнал на собственном опыте. Но самое главное — эта книга поможет начинающим и даже опытным рекрутерам сохранить здравомыслие в любых обстоятельствах.«Как только появилась такая отрасль, как IT, рекрутерам пришлось искать специалистов для нее. Чаще всего в работе применялись те же инструменты и средства, что и в обычном рекрутменте, который далеко не всегда был передовым и технологичным. Чего уж там говорить — даже база кандидатов зачастую не велась».«Какой вывод из этого напрашивается? К черту рекрутеров. К черту компании, в которых работают непрофессиональные рекрутеры, путающие Java и JavaScript (да-да, это очень старая шутка, но даже в 2022 году встречаются люди, считающие, что это один и тот же язык программирования)».«Когда-то, когда я искал рекрутера к себе в компанию, я решил "по науке" составить профиль кандидата и расписать все качества и умения, которые должны у него быть, пояснив, каким образом я буду оценивать эти качества. Получился список из 43 пунктов. Только вдумайтесь: из 43!»Для когоДля рекрутеров и эйчаров, специалистов кадровых служб, как уже работающих в найме IT-специалистов, так и еще только планирующих перейти в эту сферу. Заинтересоваться профессией IT-рекрутера могут и выпускники вузов (причем не только технических), и абитуриенты, и представители других профессий, решившие перепрофилироваться.

Егор Яценко

Маркетинг, PR / Менеджмент / Финансы и бизнес