Читаем Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности полностью

На основании этого можно сделать вывод о существовании еще одной сложности в использовании ИИ на предприятиях: дело в том, что технологий ИИ достаточно много и большинство из них можно применять несколькими способами, приспосабливая для выполнения различных функций. Комбинации технологий и функций достаточно сложны – настолько, что исследователь ИИ Крис Хэммонд даже предложил «периодическую систему» ИИ[12]. Далее приведена таблица, в которой перечисляются семь ключевых технологий, дается краткое описание каждой из них, а также называются сферы их применения и типичные функции.

Я также опишу, насколько распространена каждая из технологий в мире бизнеса. Я работаю со многими компаниями и прежде всего являюсь профессором в бизнес-школе, но также занимаю должность старшего советника по стратегии и аналитике в Deloitte, что предполагает оказание консалтинговых услуг по вопросам искусственного интеллекта. В 2017 г. я помог подготовить и проанализировать опрос, в котором приняли участие 250 американских работников руководящего звена, осведомленных о когнитивных технологиях, то есть работающих в организациях, активно использующих такие технологии, и понимающих принципы их применения. В первую очередь участников опроса спрашивали, какие технологии используются в их компаниях.

Ниже приведена таблица, в которой подробнее описывается каждая из технологий и сфера ее применения.

Статистическое машинное обучение

Машинное обучение – это техника автоматической подгонки моделей к данным и «обучения» посредством тренировки моделей данными. Машинное обучение представляет собой одну из самых распространенных форм ИИ: в проведенном в 2017 г. опросе Deloitte 58 % из 250 «осведомленных о когнитивных технологиях» руководителей, компании которых уже внедряли ИИ, ответили, что в их бизнесе используется машинное обучение. Эта техника лежит в основе многих решений в сфере искусственного интеллекта и имеет множество вариантов. Резкий рост объемов данных внутри компаний и – особенно – за их пределами сделал возможным и необходимым применение машинного обучения для осмысления всей этой информации.

Более сложную форму машинного обучения представляет собой нейронная сеть – доступная с 1960-х гг. технология, которая используется для категоризации, например для выявления мошенничества в сфере кредитных операций. Она рассматривает каждую задачу как совокупность входящих и исходящих данных, а также переменных или «функций» различного веса, которые связывают входящие данные с исходящими. Работа этой технологии напоминает процесс обработки сигналов нейронами мозга, но аналогия с мозгом не слишком удачна.

Наиболее сложные формы машинного обучения предполагают глубокое обучение, или построение моделей нейронных сетей, имеющих множество уровней функций и переменных, предсказывающих результаты. В таких моделях могут быть тысячи функций, которые обеспечиваются более быстрой работой современных компьютерных архитектур. В отличие от более ранних форм статистического анализа, каждая функция модели глубокого обучения, как правило, мало что значит для человека. В связи с этим модели очень трудно или невозможно интерпретировать. В опросе Deloitte 34 % компаний использовали технологии глубокого обучения.

Модели глубокого обучения прогнозируют и классифицируют результаты с применением техники обратного распространения ошибки[13]. Именно эта технология ИИ стоит за целым рядом недавних прорывов – от победы над человеком при игре в го до классификации изображений в интернете. Отцом глубокого обучения часто называют Джеффри Хинтона из Университета Торонто и компании Google – и отчасти как раз из-за ранней работы над техникой обратного распространения ошибки.

В машинном обучении задействуется более сотни возможных алгоритмов, и большинство из них весьма причудливы. Спектр этих алгоритмов весьма широк и охватывает все – от повышения градиента (метода построения моделей, которые устраняют ошибки предыдущих моделей, тем самым повышая их способность к прогнозированию и классификации) до случайных лесов (моделей, которые представляют собой ансамбль моделей дерева принятия решений). Все чаще программное обеспечение (включая DataRobot, SAS и AutoML от Google) позволяет автоматизировать построение моделей машинного обучения, в ходе которого происходит апробация различных алгоритмов с целью выявить наиболее удачный[14]. Как только обнаруживается лучшая модель для прогнозирования или классификации тренировочных данных, ее используют для прогнозирования и классификации новых данных (иногда это называют скорингом).

Перейти на страницу:

Похожие книги

10 заповедей коммуникационной войны. Как победить СМИ, Instagram и Facebook
10 заповедей коммуникационной войны. Как победить СМИ, Instagram и Facebook

Благодаря развитию социальных сетей и интернета информация сейчас распространяется с ужасающей скоростью – И не всегда правдивая или та, которую мы готовы раскрыть. Пост какого-нибудь влогера, который превратит вашу жизнь в кромешный ад, лишит ваш бизнес потребителей, заставит оправдываться перед акционерами, партнерами и клиентами всего лишь вопрос времени.Как реагировать, если кто-то сообщает ложные сведения о вас или вашем бизнесе? Что делать, если вы оказались вовлечены в публичный конфликт? Как правильно признать свою ошибку?Авторы книги предлагают 10 универсальных заповедей – способов поведения, которые помогут вам выйти из сложных коммуникационных ситуаций, а два десятка практических примеров (как положительных, так и отрицательных) наглядно демонстрируют широту и особенности их применения.Вряд ли у вас получится поставить эту книгу на полку, прочитав один раз. Оставьте ее на виду, обращайтесь к ней как можно чаще, и тогда у вас появится шанс выжить в коммуникационном армагеддоне XXI века.

Дмитрий Солопов , Каролина Гладкова

Маркетинг, PR / Менеджмент / Финансы и бизнес
Управление рисками
Управление рисками

Harvard Business Review – ведущий деловой журнал с многолетней историей. В этот сборник вошли лучшие статьи авторов HBR на тему риск-менеджмента.Инсайдерские атаки, саботаж, нарушение цепочек поставок, техногенные катастрофы и политические кризисы влияют на устойчивость организаций. Пытаясь их предотвратить, большинство руководителей вводят все новые и новые правила и принуждают сотрудников их выполнять. Однако переоценка некоторых рисков и невозможность предусмотреть скрытые угрозы приводят к тому, что компании нерационально расходуют ресурсы, а это может нанести серьезный, а то и непоправимый ущерб бизнесу. Прочитав этот сборник, вы узнаете о категориях рисков и внедрении процессов по управлению ими, научитесь использовать неопределенность для прорывных инноваций и сможете избежать распространенных ошибок прогнозирования, чтобы получить конкурентное преимущество.Статьи Нассима Талеба, Кондолизы Райс, Роберта Каплана и других авторов HBR помогут вам выстроить эффективную стратегию управления рисками и подготовиться к будущим вызовам.Способность компании противостоять штормам во многом зависит от того, насколько серьезно лидеры воспринимают свою функцию управления рисками в то время, когда светит солнце и горизонт чист.Иногда попытки уклониться от риска в действительности его увеличивают, а готовность принять на себя больше риска позволяет более эффективно им управлять.Все организации стремятся учиться на ошибках. Немногие ищут возможность почерпнуть что-то из событий, которые могли бы закончиться плохо, но все обошлось благодаря удачному стечению обстоятельств. Руководители должны понимать и учитывать: если люди спаслись, будучи на волосок от гибели, они склонны приписывать это устойчивости системы, хотя столь же вероятно, что сама эта ситуация сложилась из-за уязвимости системы.Для когоДля руководителей, глав компаний, генеральных директоров и собственников бизнеса.

Harvard Business Review (HBR) , Сергей Каледин , Тулкин Нарметов

Карьера, кадры / Экономика / Менеджмент / Финансы и бизнес
Управление дебиторской задолженностью
Управление дебиторской задолженностью

Эта книга – ценный источник советов по грамотному управлению дебиторской задолженностью. С ее помощью вы узнаете все необходимое о кредитной политике предприятия, правилах заключения договора и правилах торговли, организации службы финансовой безопасности фирмы. Рекомендации, приведенные в книге, позволят вам оценить реальный размер дебиторской задолженности, с легкостью разобраться с предприятиями-должниками и, что самое главное, выявить потенциальных должников.Советы по «возврату долгов» основаны на многолетнем практическом опыте автора и представлены в виде сценариев, ориентированных на различные ситуации. Клиенты бывают разными, и зачастую их не выбирают, поэтому для кредитного контролера крайне важно суметь найти подход к каждомуКнига рассчитана на широкий круг читателей – в первую очередь тех, кто вынужден бороться со «злостными неплательщиками».

Светлана Геннадьевна Брунгильд , Сергей Каледин

Карьера, кадры / Юриспруденция / Бухучет и аудит / О бизнесе популярно / Менеджмент / Образование и наука / Финансы и бизнес
Чистый Agile. Основы гибкости
Чистый Agile. Основы гибкости

Прошло почти двадцать лет с тех пор как появился Манифест Agile. Легендарный Роберт Мартин (Дядя Боб) понял, что пора стряхнуть пыль с принципов Agile, и заново рассказать о гибком подходе не только новому поколению программистов, но и специалистам из других отраслей. Автор полюбившихся айтишникам книг «Чистый код», «Идеальный программист», «Чистая архитектура» стоял у истоков Agile. «Чистый Agile» устраняет недопонимание и путаницу, которые за годы существования Agile усложнили его применение по сравнению с изначальным замыслом.По сути Agile — это всего лишь небольшая подборка методов и инструментов, помогающая небольшим командам программистов управлять небольшими проектами,… но приводящая к большим результатам, потому что каждый крупный проект состоит из огромного количества кирпичиков. Пять десятков лет работы с проектами всех мыслимых видов и размеров позволяют Дяде Бобу показать, как на самом деле должен работать Agile.Если вы хотите понять преимущества Agile, не ищите лёгких путей — нужно правильно применять Agile. «Чистый Agile» расскажет, как это делать разработчикам, тестировщикам, руководителям, менеджерам проектов и клиентам.

Роберт Сесил Мартин , Роберт С. Мартин

Программирование, программы, базы данных / Менеджмент / Финансы и бизнес