Читаем Внутреннее устройство Linux полностью

Аппаратные средства ПК содержат часы реального времени (RTC, real-time clock) с питанием от батареи. Это не самые точные часы в мире, но они лучше, чем совсем ничего. Ядро обычно устанавливает время на основе показаний RTC во время загрузки системы, и можно выполнить сброс показания системных часов до текущего значения аппаратного времени с помощью команды hwclock. Настройте аппаратные часы на время UTC (Universal Coordinated Time, всеобщее скоординированное время), чтобы избежать различных сложностей, связанных с часовыми поясами или переходом на летнее время. Можно настроить часы RTC в соответствии с UTC-часами ядра с помощью следующей команды:

# hwclock — hctosys — utc

К сожалению, ядро хранит время еще хуже, чем часы RTC, и поскольку компьютеры Unix часто работают в течение нескольких месяцев или лет после единственной загрузки, возрастает смещение по времени. Смещение по времени — это текущая разность между временем ядра и истинным временем (которое определено по атомным или каким-либо еще очень точным часам).

Не следует пытаться исправлять смещение по времени с помощью команды hwclock, поскольку системные события, основанные на времени, могут быть потеряны или искажены. Можно было бы запустить утилиту вроде adjtimex, чтобы аккуратно обновить показания часов, но обычно правильность системного времени лучше всего поддерживать с помощью сетевого демона времени (см. подраздел 7.5.2).

7.5.1. Представление времени в ядре и часовые пояса

Системные часы ядра представляют текущее время в виде количества секунд, протекших с полуночи 1 января 1970 года по времени UTC. Чтобы увидеть это значение для данного момента, запустите такую команду:

$ date +%s

Чтобы представить это число в приемлемом для человека формате, команды из пространства пользователя переводят его в местное время с учетом перехода на летнее время, а также других необычных обстоятельств (таких как проживание в штате Индиана2). Местный часовой пояс настраивается с помощью файла /etc/localtime. Не пытайтесь заглянуть в него, поскольку этот файл является двоичным.

Файлы часовых поясов для вашей системы расположены в каталоге /usr/share/zoneinfo. Этот каталог содержит множество файлов часовых поясов и псевдонимов для них. Чтобы настроить часовой пояс вручную, скопируйте один из таких файлов из каталога /usr/share/zoneinfo в каталог /etc/localtime, или создайте символическую ссылку, или же измените его с помощью инструмента для работы с часовыми поясами. Команда tzselect может помочь вам при определении файла часового пояса.

Чтобы использовать лишь на один сеанс оболочки часовой пояс, который отличается от установленного в системе по умолчанию, укажите в переменной окружения TZ имя файла из каталога /usr/share/zoneinfo и проверьте изменения, например, так:

$ export TZ=US/Central

$ date

Как и в случае с другими переменными окружения, можно указать часовой пояс только на время работы единственной команды:

$ TZ=US/Central date

7.5.2. Сетевое время

Если ваш компьютер постоянно подключен к сети Интернет, можно запустить демон NTP (Network Time Protocol, протокол сетевого времени), чтобы настраивать время с помощью удаленного сервера. Во многие версии ОС встроена поддержка демона NTP, однако он может быть не включен по умолчанию. Может потребоваться установка пакета ntpd, чтобы привести его в действие.

Если вам необходимо выполнить конфигурацию вручную, справочную информацию можно найти на основной странице NTP (http://www.ntp.org/), но если вы предпочитаете не копаться в документации, выполните следующее.

1. Отыщите ближайший к вам сервер NTP, узнав его от поставщика интернет-услуг или на странице ntp.org.

2. Поместите имя сервера времени в файл /etc/ntpd.conf.

3. Запустите во время загрузки системы команду ntpdate server.

4. После команды ntpdate запустите во время загрузки системы команду ntpd.

Если ваш компьютер не подключен к Интернету постоянно, можно использовать демон вроде chronyd, чтобы поддерживать время, когда подключение отсутствует.

Можно также настроить аппаратные часы на основе сетевого времени, чтобы обеспечить связность отсчета времени в системе при ее перезагрузке. Во многих версиях ОС это происходит автоматически. Чтобы выполнить это, возьмите системное время из сети с помощью команды ntpdate (или ntpd), а затем запустите команду, которую вы уже видели ранее:

# hwclock — systohc — utc

7.6. Планирование повторяющихся задач с помощью службы cron

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных
C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT