Читаем Внутреннее устройство Linux полностью

Предлагаемые замены на самом деле являются лишь частями новых версий команды init: для варианта systemd это модули таймера, а для варианта Upstart идея заключается в возможности создания повторяющихся событий для запуска заданий. В конечном итоге оба варианта команды init могут запускать задачи от имени любого пользователя; они обладают также некоторыми преимуществами, такими как специальный вход в систему.

Однако реальность такова, что ни версия systemd, ни версия Upstart не обладают в данный момент всеми возможностями утилиты cron. Более того, когда они будут способны к этому, потребуется обратная совместимость для поддержки всего, что основано на службе cron. По этим причинам формат cron вряд ли исчезнет в ближайшее время.

7.7. Планирование единовременных задач с помощью службы at

Чтобы запустить задание в будущем один раз без помощи службы cron, воспользуйтесь службой at. Например, чтобы запустить команду myjob в 22:30 вечера, введите такую команду:

$ at 22:30

at> myjob

Завершите ввод, нажав сочетание клавиш Ctrl+D. Утилита at считывает команды из стандартного ввода.

Чтобы убедиться в том, что задание запланировано, используйте команду atq. Чтобы его удалить, запустите команду atrm. Можно также указать день для выполнения задания, добавив дату в формате ДД.ММ.ГГ, например, так: 22:30 30.09.15.

О команде at больше нечего добавить. Хотя она используется нечасто, она может пригодиться тогда, когда вам необходимо сообщить системе, чтобы она выключилась в будущем.

7.8. Идентификаторы пользователей и переключение между пользователями

Мы рассказывали о том, каким образом setuid-команды вроде sudo и su позволяют вам сменить пользователя, а также упомянули о системных компонентах типа login, которые контролируют пользовательский доступ. Возможно, вам интересно, как работают эти составляющие и какую роль играет ядро в переключении между пользователями.

Существует два способа изменить идентификатор пользователя, и оба они используются ядром. Первый способ — с помощью исполняемого файла setuid, о котором рассказано в разделе 2.17. Второй способ — используя семейства системных вызовов setuid(). Есть несколько различных версий таких вызовов, которые охватывают всевозможные идентификаторы пользователей, связанные с процессами, как вы узнаете далее.

Ядро обладает набором правил относительно того, что дозволено процессу, а что — нет. Приведу три основных правила.

• Процесс, запущенный как корневой (userid 0), может использовать команду setuid(), чтобы стать любым другим пользователем.

• На процесс, запущенный не в качестве корневого, накладываются строгие ограничения по использованию команды setuid(); в большинстве случаев он не может ее использовать.

• Любой процесс может выполнить setuid-команду, если у него есть соответствующие права доступа к файлам.

примечание

Переключение между пользователями никак не затрагивает пароли или имена пользователей. Эти понятия относятся исключительно к пространству пользователя, как вы уже видели на примере файла /etc/passwd в подразделе 7.3.1. Дополнительные подробности о том, как это работает, — в разделе 7.9.

Принадлежность процессов, эффективный, реальный и сохраненный идентификатор пользователя. Наш рассказ об идентификаторах пользователя до сего момента был упрощенным. В действительности каждый процесс снабжен несколькими идентификаторами пользователя. Мы описали эффективный идентификатор пользователя (euid), который определяет права доступа для процесса. Второй идентификатор пользователя, реальный идентификатор пользователя (ruid), указывает на инициатора процесса. При запуске setuid-команды система Linux устанавливает для владельца команды значение эффективного идентификатора пользователя во время исполнения, но она сохраняет исходный идентификатор в качестве реального идентификатора пользователя.

В современных системах различие между эффективным и реальным идентификаторами пользователя приводит к такой путанице, что большая часть документации, посвященной принадлежности процессов, является неверной.

Представляйте себе эффективный идентификатор пользователя как исполнителя, а реальный идентификатор — как владельца. Реальный идентификатор пользователя определяет того пользователя, который может взаимодействовать с запущенным процессом, и, что наиболее важно, пользователя, который может прерывать процесс и отправлять ему сигналы. Если, например, пользователь А запускает новый процесс от имени пользователя B (на основе разрешений setuid), то пользователь A по-прежнему владеет этим процессом и может его прервать.

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных
C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT