- Мне кажется, что этот тангенс как-то, может быть, и грубо, но все же измеряет ту же самую скорость. Я заключаю это из того, что если все построение сдвинуть по абсциссе вправо или влево, не изменяя размеров приращения икса, то наклон секущей по отношению к положительному направлению оси абсцисс, - а следовательно, и тангенс соответствующего угла, - изменится. И изменится в соответствии с изменением скорости роста нашей функции.
- Превосходно, молодой человек! Но это все же еще не совсем точно. Давай-ка вычислим, чему же равно это отношение. Пусть до приращения икс достиг значения, которое мы обозначим просто х, а соответственный игрек - аналогично тоже просто буквой у, и пусть переменные, получив и та и другая свои приращения, получат значения x1 и у1. В таком случае можно написать, что
Δх = x1 - х;
Δy = y1 - y = (18x1 - x12
) - (18x - х2),а следовательно, отношение их будет
Δx / Δy = (18x1 - х12
- 18x + х2) / (x1 -x)Вот что представляет собой тангенс наклона секущей. Ты был прав, говоря, что он измеряет скорость изменения функции. Но вот на что следует обратить внимание: а хорошо ли он ее измеряет? Ясно, что не очень хорошо, ибо его показания зависят от размера приращения независимой переменной. Это раз. Вовторых, ясно, что секущая может дать указания на скорость лишь в среднем, на измеряемом промежутке, то есть только в общем, а отнюдь не в тех важнейших подробностях, которые могут понадобиться в исследовании. И вот в силу этих двух особенностей это показание недостаточно. Что же следует сделать и как с ним поступить, дабы его коренным образом улучшить? Для этого мы начнем сближать х1 и х, тогда y1 и у также начнут сближаться. И если мы будем все уменьшать и уменьшать расстояние между х1 и х, то при безграничном уменьшении секущая... Что сделает наша секущая?
- А как ты будешь уменьшать? - спросил в свою очередь Илья, глянув на чертеж.
- Я буду придвигать х1 к х справа налево.
- 384 -
- В таком случае секущая станет поворачиваться около точки A. И в конце концов она станет не секущей, а касательной.
- Я бы только сказал не "в конце концов", а в пределе. Так! Ну, а теперь посмотрим, что получится с этим уменьшением приращений не на чертеже, а в нашей формуле отношения приращений:
Δx / Δy = (18x1 - х12
- 18x + х2) / (x1 -x)Дальнейшие преобразования уже несложны:
Δx / Δy = (18x1 - х12
- 18x + х2) / (x1 -x) = [18(x1 - x) - (х12 - х2)] / (x1 -x) == [18(x1 - x) - (х1 - х)(х1 + х)] / (x1 -x) = 18 - (х1 + х)
Теперь, если х1 безгранично приближается к х, а у1 тем же порядком приближается к у, то, очевидно, мы уже получаем полное право в пределе не делать отличия между х1 и х, а просто положить их равными друг другу. Тогда правая часть последней формулы превратится в
18 - 2х.
Это и будет искомая производная. А чтобы найти максимум, мы должны приравнять ее нулю, решить получившееся уравнение относительно икса - и все. Отмечу еще, что предел отношения обозначается теперь уже не через отношение дельт, а через отношение латинских d; пишется
dy/dx = 18 - 2х
а читается "дэ игрек по дэ икс". Но, конечно, для более сложных функций все это сделать труднее. Дифференциальное исчисление и занимается установлением формул и правил, с помощью которых можно, зная выражение у через х, найти закон "изменения скорости изменения" у, то есть найти выражение для производной dy/dx. Интегральное исчисление, как мы выяснили, занимается обратной задачей.
- Очень хорошо! - воскликнул Илюша. - Теперь еще только один вопрос. Ты обещал рассказать про гору Пюи-де-Дом и Паскаля.
- 385 -