Он очень любезно улыбнулся и заметил:
- Чудесные звезды, не правда ли?
- Мне очень хотелось бы, - сказал Илюша, - чтобы вы еще как-нибудь показали мне подробно, как вы, мнимые человечки, возникаете из квадратного уравнения?
- Вы ведь знаете, - начал свой рассказ Мнимий, - что, когда квадратное уравнение "не решается", мы получаем два комплексных корня, причем они таковы, что действительные части их равны, а мнимые отличаются по знаку:
а + bi; а - bi.
Такие комплексные числа называются сопряженными.
- 414 -
Сопряженные комплексные числа обладают одним замечательным свойством: их сумма так же, как и их произведение, является действительными числами. Это нетрудно проверить!
- Знаю! - откликнулся Илья. - Я уж пробовал. Мне кажется, как будто, что при перемножении мнимых чисел разные знаки дают плюс, а одинаковые минус...
- Ученые, - продолжал Мнимий, - сперва, в семнадцатом веке, догадались, а через два века и доказали, что если принимать в расчет все корни уравнения, и действительные и комплексные, то вместе их будет всегда столько же, сколько единиц в показателе степени старшего члена уравнения. Это положение, чрезвычайно важное для алгебры, обычно называется основной теоремой алгебры[34]
. Попутно выяснилось, что комплексных корней всегда бывает четное число, и у каждого такого корня имеется сопряженный комплексный корень.А то, что вы хотите узнать, можно показать на геометрическом примере. Сначала мы возьмем обычную декартову плоскость, затем еще одну, которая будет комплексной, и она же будет полупрозрачной... А вы, юноша, дайте мне квадратное уравнение поудобней!
- Пожалуйста! - не задумываясь, ответил наш герой, -
х2
- 8х+ 15 = 0.Три и пять. Лучше не придумаешь.
- Сойдет, - ответил Мнимий. - Дальше так: пусть перед нами встанет первая плоскость, на ней оси деления и парабола. А комплексная плоскость пусть станет перед первой вплотную. Она полупрозрачная, и через нее мы отлично увидим первую.
Так все и случилось. Сперва возникла обычная плоскость, причем ось абсцисс была голубая, а ось ординат розовая, потом возникла и темно-синяя парабола. А на делениях ( + 3) и (+5), там, где были корни квадратного уравнения, где парабола пересекла ось абсцисс, ярко горели две блестящие оранжевые точки.
- Вот и корни! - сказал Илюша.
- А теперь мы сотворим и комплексную.
И действительно, тут же, поправей, возникла еще одна плоскость, не очень заметная, матовая. На ней были тоже две взаимно перпендикулярные оса, действительная и мнимая, только они были совсем тоненькие. В начале координат сияла зеленая точка.
- 415 -
- Подвиньтесь! - вежливо попросил Мнимий.
И тут комплексная плоскость подвинулась налево и стала так аккуратно, что оси на том и на другом чертеже почти слились (они ведь были в одном масштабе!), но все было очень хорошо видно через вторую полупрозрачную плоскость.
- А зеленая точка на нуле, - сообразил мальчик, - означает, что ничего мнимого пока еще нет?
- По-видимому, так... - раздался торжественный шепот прямо из самого экрана: волшебные чертежи, оказывается, отлично умеют говорить!
- Итак, - продолжал Мнимий, - следите за мной хорошенько, и вскоре все станет ясно. Вот перед вами парабола!
Она, как вы знаете, прекрасная гречанка, и от роду ей очень много лет. Для того чтобы все было не так хитро, мы будем рассматривать ее в таком виде, что коэффициент при иксе во второй степени будет равен единице.
- То есть, - подхватил Илья, - мы берем выражение
ах2
+ bх + си делим все члены на а.
Теперь перед Илюшей сиял график квадратного трехчлена, то есть чертеж параболы, обращенной вершиной вниз, ее ось стояла вертикально, и вершина параболы была ниже оси абсцисс (которая, как мы знаем, горизонтальная). Парабола пересекала ось абсцисс дважды. Недалеко засветилось и само уравнение:
х2
- 8х+ 15 = 0.- А какие у нас корни? - спросил Мнимий.
- Два действительных корня, потому что парабола пересекает ось абсцисс два раза, - отвечал мальчик.
- Справедливо. Теперь я попрошу параболу подняться немножко повыше.
Парабола охотно послушалась, и две оранжевые точки на горизонталях стали сближаться; и вот уже вершина параболы только касалась оси абсцисс в одной точке. Две оранжевые точки сошлись в одну.
- А теперь? - спросил Мнимий.
Рядом уже светилось и уравнение:
х2
- 8х + 16 = 0.- А теперь, - отвечал Илья, - два одинаковых действительных корня, оба равны (+4).
- 416 -
- Так. Согласен. Попрошу еще вверх немного.