Читаем ВОЛШЕБНЫЙ ДВУРОГ полностью

- Правильно, - согласился Мнимий, - такие весьма важные перемены и бывают, как я выразился, "нежданно разительными". Такие нововведения, обобщающие большой опыт, дают огромные результаты и сразу двигают науку вперед.

Проходит несколько десятилетий - и науку уже узнать нельзя, так быстро она развивается на новом рубеже. Арабы построили алгебру, ее узнали в Европе, а затем сразу раздаются мощные голоса Виеты и Декарта. И вот уже та алгебра, которую вы учите в школе, построена. И все становится иным, появляются возможности строить еще нечто совершенно новое.

- А когда это случилось?

- Арабская алгебра родилась примерно в восьмом или девятом веках, а распространять ее в Европе стали примерно с двенадцатого века. Я имею в виду славного Ал-Хорезми.

- 426 -

Прибор Платона.

В это же время появляются сочинения европейцев, уже освоивших алгебру. В начале шестнадцатого века все это было в Европе освоено, развито и вот тут-то Европа встает на новый путь развития. Сочинения Архимеда и Аполлония переведены и напечатаны. Начинаются новые труды. Они как бы вмещают все, что Европа унаследовала от арабов (а стало быть, и от индийцев) и от Древней Греции. И теперь начинаются плодотворнейшие труды по объединению того и другого. Если труды европейцев, которые привели к интегральному и дифференциальному исчислению, были завершением ТРУДОВ древних, шедших в том же направлении, то с шестнадцатого века началось еще одно движение: новые достижения риторической алгебры были впервые успешно применены к решению алгебраических уравнений высших степеней, например кубических.

- А раньше их совсем не умели решать? - спросил Илюша,

- 427 -

Одна средняя пропорциональная и один прямой угол.

- Опыты и частные решения были. Мы вам рассказывали о способе Двух средних пропорциональных и о способе Менехма (в Схолии Пятнадцатой - способ двух парабол). Но все это были геометрические способы, которые не обладали общностью, то есть не могли быть применены для решения любой задачи, которая приводит к кубическому уравнению.

- Мы рассматривали, кажется, тогда, - заметил Илюша, - пропорцию Гиппократа:

а : х = х : у = у : b

и ее алгебраическое решение, а как греки решали, мы как будто не говорили.

- Ну что ж, - сказал Радикс, - можно и это припомнить.

Для решения этой задачи - для удвоения куба - можно пользоваться так называемым "прибором Платона", который легко представить тебе в виде двух плотничьих наугольников, то есть деревянных прямых углов, как бы прямоугольных треугольников без гипотенузы. Начинаем с чертежа, где изображены две прямые, пересекающиеся под прямым углом. Затем берутся два угольника и прикладываются друг к другу так, чтобы они образовывали два прямых угла. Нетрудно рассудить, что если даны длины отрезков а и b, то из двойной пропорции Гиппократа, которую я только что привел, можно получить:

х3 = a2b; у3 = ab2;

и, положивши b = 2а, получаем:

Все это так сложно формулируется потому, что у Евклида в его Началах (книга IX) степени - квадраты, кубы и так далее - так и вводятся, через пропорции, и опираются на известные свойства геометрической прогрессии:

1, x, x2, x3, 4 ... xn

- 428 -

где ясно, что каждый член является средней геометрической между двумя своими соседями справа и слева, как например:

х2 = √(х • x3 )

а четыре последовательных члена связаны двойной непрерывной пропорцией:

1 : х = х : х2 = х2 : х3,

которой и пользуется Гиппократ. Теперь возвращаюсь к построению: циркуль дает одну среднюю пропорциональную, которую мы разбирали в Схолии Пятнадцатой, тогда как два прямых угла действуют словно два объединившихся циркуля, они дают нам разом две средних, как это ясно из другого чертежа. Прямой угол мы всегда можем себе представить опирающимся на диаметр некоторой окружности, не так ли?.. А если у нас имеются два прямых угла, причем их всегда можно сдвигать и раздвигать так, что эти диаметры воображаемых окружностей могут изменяться (и при этом независимо друг от друга), то мы получаем особый прибор вроде двоякого циркуля, который может дать нам сразу две средние пропорциональные, те самые, которые требуются для пропорции Гиппократа.

Принцип прибора Платона.

- 429 -

- По-моему, - сказал Илья, внимательно осмотрев чертежи Радикса, - как будто все правильно. Какой интересный этот способ двух прямых углов! И если а = 1, то икс и будет корнем кубическим из двух. Все верно.

Перейти на страницу:

Похожие книги

История России
История России

Издание описывает основные проблемы отечественной истории с древнейших времен по настоящее время.Материал изложен в доступной форме. Удобная периодизация учитывает как важнейшие вехи социально-экономического развития, так и смену государственных институтов.Книга написана в соответствии с программой курса «История России» и с учетом последних достижений исторической науки.Учебное пособие предназначено для студентов технических вузов, а также для всех интересующихся историей России.Рекомендовано Научно-методическим советом по истории Министерства образования и науки РФ в качестве учебного пособия по дисциплине «История» для студентов технических вузов.

Александр Ахиезер , Андрей Викторович Матюхин , И. Н. Данилевский , Раиса Евгеньевна Азизбаева , Юрий Викторович Тот

Педагогика, воспитание детей, литература для родителей / Детская образовательная литература / История / Учебники и пособия / Учебная и научная литература