Читаем Волшебный двурог полностью

— Совсем из головы вон! — сокрушенно сказал Асимптотос. — А ведь и вправду обещали! Поди-ка, Коникос, поищи-ка, где у нас там трактриса завалилась.

Не прошло и минуты, как Коникос вернулся весьма смущенный и раздосадованный.

— Пропала, скажи на милость! Истинное наказание!

— Ничего, — успокоил Асимптотос. — Подумаешь, какое горе! Возьмем да и новую сделаем.

Коникос принес довольно большую цепь с тяжелыми звеньями, вроде корабельной, и повесил ее за два конца на стену.

Цепь угрюмо повисла, образуя почти дугу, открытую сверху.

— 273 —

— Похоже на параболу, — шепнул Илюша Радиксу.

— Неверно. Впрочем, подобную ошибку в свое время сделал даже сам Галилей, так что тебе и подавно простительно.

Однако все же ты должен запомнить, что это вовсе не парабола, а так называемая цепная линия. Она только на маленьком участке у вершины очень похожа на параболу.

— К этой цепи у нас, — сказал Асимптотос, — прилажена особая ниточка, гибкая, нерастяжимая. Сейчас я ее отделю от цепи. Это особый способ чертить кривые — при помощи такой ниточки. Ты умеешь чертить по линейке, умеешь чертить циркулем, а это еще один способ чертить. Смотри внимательно! Я отщипну эту ниточку в самой точке вершины цепи, то есть цепной линии, и буду, крепко все время натягивать нить, следить за тем, какую кривую опишет конец нити в той плоскости, в которой находится кривая. Так вот эту кривую, которую опишет конец нити, мы называем эвольвентой данной исходной, начальной кривой. А кривая, с которой надо сматывать нить, чтобы получить некую требуемую кривую, называется эволютой этой последней.

При этих словах Асимптотос отщипнул что-то от цепи в самой нижней ее точке. В руках его оказалась тонкая блестящая нить, которую наш ученый старичок начал как бы сматывать с цепи, все время крепко натягивая нить вниз и направо. И конец

— 274 —

нити послушно начертил новую своеобразную кривую, совершенно непохожую на ценную линию.

— Ну вот тебе и трактриса! — радостно воскликнул Коникос. — Сам Лейбниц дал ей это имя.

— Так что трактриса есть эвольвента цепной линии? — спросил Илюша.

— Точно! — отвечал Коникос. — Оказывается, ты кое-что соображаешь!

— Но если, — снова начал Илюша, — это особый способ чертить кривые, то должен ведь быть какой-нибудь общий прием, чтобы начертить так любую кривую?

— Это не так уж сложно, — вмешался Асимптотос. — Ты вот посмотри на перпендикуляры к касательным, которые именуются нормалями данной кривой.

— Радиус окружности и есть ее нормаль? — спросил Илюша.

— Справедливо! — отвечал Асимптотос. — Посмотри и заметишь, что касательные эволюты суть не что иное, как нормали эвольвенты. Поэтому, если тебе задана эвольвента, то построй к ней побольше нормалей: все они будут касательными к эволюте, которую эти касательные очень ясно обозначат на чертеже. Это будет кривая, плавно огибающая все эти прямые, касаясь их.

— Эволют у нас девать некуда, — заметил Коникос, — целая кладовая. Но можно еще и по-другому все это проделать.

Возьми отрезок прямой, приложи его в одной точке к шаблону эволюты и кати его по кривой, только чтобы он не скользил.

Вот ты и получишь эвольвенту безо всякой нити, потому что какая-нибудь заранее отмеченная точка на катящемся отрезке вычертит эвольвенту.

Радикс сейчас же объяснил Илюше, что он на досуге и сам все это может проделать. Надо взять тонкую и нежесткую нитку примерно в сорок сантиметров длиной, намочить ее и мокрую повесить на стену на два гвоздика, которые вбиваются на расстоянии около пятнадцати сантиметров друг от друга.

А на то место, куда мы повесим нить, надо заранее прикрепить кнопками лист белой бумаги. Затем следует аккуратно начертить кривую, которую образует мокрая нитка, — это и будет приблизительно цепная линия. По этому чертежу надо изготовить картонный или фанерный шаблончик. В верхнем его углу следует закрепить нитку, обвести се по краю шаблона, а у вершины сделать петельку. Если теперь взять карандаш (сделав предварительно маленькую зарубку на графите) и вставить в эту петельку, то карандаш — если осторожно сматывать нитку — вычертит трактрису.

Коникос взял кривую и приладил ее, кряхтя и ворча,

— 275 —

к диаграмме с картезианскими осями, повернув ее на девяносто градусов.

— Трактриса, — сказал он, передохнув после своей нелегкой работы, — это кривая весьма древнего происхождения. Одно из замечательных свойств ее заключается в том, что если к ней провести касательную в любой точке, то расстояние по касательной от точки касания до некоторой прямой будет постоянным (удаляясь от своей вершины, трактриса неограниченно приближается к этой прямой, и на нашем чертеже эта прямая будет перпендикулярна к оси цепной линии). Если поместить конец нити на расстоянии а от горизонтальной прямой, а потом другой ее конец тянуть вдоль этой прямой, то первый конец и опишет трактрису. Отсюда и название ее (от латинского слова «тянуть»). Если же теперь мы прикрепим трактрису по ее горизонтальной оси к Центрифуге, то мы и получим искомую поверхность вращения, то есть именно псевдосферу.

Псевдосфера


Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки