Читаем Волшебный двурог полностью

— В семнадцатом веке, — сказал Радикс, — было уже довольно много ученых, которые занимались такими вопросами. Развивалась алгебра, и в решениях разных задач стало легче разбираться. Когда ты решаешь задачу арифметически, то числа после перемножения или сложения сливаются воедино, и ты уже не можешь следить за тем, что с ними происходит в течение решения. А в алгебре весь ход решения задачи у тебя перед глазами, и его легко исследовать. Греки занимались геометризованной алгеброй. Арабы много сделали для самой алгебры. В их среде были крупные ученые. Некоторые из них продолжали и даже развивали работы Архимеда по суммированию бесконечно малых. Но настоящая алгебра связана уже с европейской математикой, в частности с именем Виеты, теорему которого ты, конечно, помнишь. Затем, как мы уже говорили, замечательный французский философ и математик Декарт открыл аналитическую геометрию и ввел в употребление метод координат, хотя попытки такого рода были сделаны еще греками, а затем Орезмом в четырнадцатом веке. Это было шагом в сторону, противоположную греческим

— 327 —

ученым, — это было алгебраизацией геометрии. Это открытие дало науке очень много новых возможностей.

— А что это были за возможности? — спросил Илюша.

Вращая около этой оси часть круга, большую его половины, мы получаем яблокообразное тело.


— Дело, видишь ли, тут вот какое. Если ты умеешь составить уравнения прямой или кривой, то, получив их, можешь действовать с этими уравнениями, как с алгебраическими выражениями, что гораздо проще, чем возиться с геометрическими построениями. Если, например, надо найти точку, где пересекаются две кривые, то, зная, как написать их уравнения (другими словами, зная, как выражается игрек через икс для одной из кривых и как выражается игрек через икс для другой), приравнивают эти алгебраические выражения друг другу и решают обычным путем получившееся таким образом уравнение относительно икса. Решение дает абсциссу искомой точки. Подставив икс в любое из уравнении, ты находишь и ординату, то есть значение игрека. Ну вот, к примеру, у нас есть две прямые:

y1 = 25 + 19x;

у2 = 5 + 9х.

Спрашивается: где пересекаются эти прямые? Другими словами, требуется найти координаты точки пересечения этих прямых. Совершенно очевидно, что в искомой точке и у1 и у2 имеют одно и то же значение, а следовательно, мы найдем абсциссу точки пересечения из такого уравнения:

25 + 19х = 5 + 9x.

Решая это уравнение, находим, что

x = —2.

— 328 —

Чтобы найти ординату точки пересечения, подставляем найденное значение икса в любое из уравнений прямых и получаем:

y = —13.

Итак, координаты точки пересечения найдены, они равны:

—2; —13.

Если тело обрезать сверху и снизу, получается бочка, объемом которой интересовался Кеплер. Еще более близкое к бочке тело можно получить из эллипса подобным же образом.


Когда Декарт, говорят, привел в порядок все эти свои открытия, то он сказал: «Я решил все геометрические задачи». И это было справедливо в том смысле, что, владея его методом, можно было решить почти все задачи, известные в то время. Для примера того, как расширялись возможности наших суждений, вспомним параболу. Сперва греки говорили, что парабола есть сечение конуса плоскостью, параллельной образующей конуса. Затем, после того как было формулировано понятие геометрического места и оценено значение этого понятия, они определили параболу так: это геометрическое место точек, равноотстоящих от прямой и точки (директрисы и фокуса). А по методу Декарта легко показать, что парабола — это график квадратного трехчлена. Чисто геометрическое построение сроднилось с чисто алгебраическим. Причем и то и другое очень выиграло в смысле наглядности и простоты. Таким образом, ум математика освободился от целого ряда мелких, но хлопотливых трудностей, и это помогло заняться более важными работами. Геометрия и алгебра как бы слились в одну науку, и их сила увеличилась от этого во много раз. Алгебра позволяет преобразовывать уравнения, выра—

— 329 —

Парабола третьего порядка.

Один вещественный корень и два комплексных.


жающие геометрические соотношения, а геометрия наглядно представляет смысл многих алгебраических зависимостей и преобразований. Можно теперь высказывать очень странные на первый взгляд суждения, например, что у квадратного трехчлена есть ось или фокус. И ты будешь прав: действительно у геометрического образа квадратного трехчлена, то есть у параболы, имеется и то и другое. А есть ли смысл в таких «странных» замечаниях? Представь себе, что есть, и вот пример. Что это, собственно, означает, что у квадратного уравне-

— 330 —

ния имеются два корня? Это значит, что парабола на графике дважды пересекает ось абсцисс, или ось иксов, как мы это выяснили в Схолии Двенадцатой. Что значит, что у квадратного уравнения нет вещественных корней? Это значит, что соответствующая на графике данному квадратному трехчлену парабола совсем не пересекает оси иксов — она вся находится либо выше этой оси, либо ниже ее. Если взять уравнение третьей степени:

х3 + Ах2 + Вх + С = 0,

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки