то у него должно быть три корня, например:
теперь можно составить такое уравнение:
(
+
откуда следует, что коэффициенты уравнения третьей степени связаны с корнями следующим образом:
Три вещественных корня.
— 331 —
Рассмотрим теперь, что обозначает геометрически утверждение о трех корнях. Если мы напишем
то будем иметь дело с кривой, которая сперва поднимается вверх, доходит до некоторого максимума, потом опускается, доходит до некоторого минимума, а затем снова начинает подниматься. Разумеется, все это может идти и обратным порядком (то есть сперва будет минимум, а потом максимум), в зависимости от знака перед
чем выполнить построением и записать такое утверждение:
«Квадрат, построенный на отрезке, длина которого равняется
— 332 —
математикам в руки способ (метод) для рассмотрения и решения труднейших задач, где геометрия и алгебра помогают друг другу. Именно метод координат и аналитическая геометрия помогли решить одну замысловатую задачу, над которой математики бились с давних пор.
— А какая это задача? — спросил Илюша.
— Это была знаменитая задача о проведении касательной. А построить касательную к окружности нетрудно.
Касательная к окружности перпендикулярна к радиусу.
— Конечно, — отвечал Илюша, — потому что эта касательная перпендикулярна к радиусу.
— Правильно. Ну, а как ты проведешь касательную к любой другой кривой? Ну, например, к той же параболе? Или к кривой обратных величин, то есть к гиперболе? У параболы, например, нет радиуса.
Илюша задумался.
— А что, если сделать так. Например, надо провести касательную к данной точке параболы. Я начерчу окружность, очень похожую на параболу на этом ее кусочке, вроде тех кругов, которыми Коникос мерил кривизну. А к окружности касательную провести ничего не стоит.
— Представь себе, что и мысль Декарта шла примерно таким же образом. Нужно тебе сказать, что и до Декарта мате—
Кривая сначала поднимается (ордината ее растет), и касательная образует с положительным направлением оси абсцисс острый угол
Кривая затем опускаетсся (ордината ее убывает), и касательная образует с полжительным направлением оси абсцисс тупой угол
— 333 —
матики проводили касательные к различным кривым, но только у них не было общего правила для этого. Перпендикуляр к касательной, как мы уже говорили в Схолии Четырнадцатой, называется нормалью кривой в данной точке. Так вот Декарт и нашел общее правило для построения нормалей. А отсюда уже не так-то трудно перейти и к самим касательным.
— Это интересно, — сказал Илюша. — Но разве это так важно — уметь провести касательную к любой кривой?
В точке, соответствующей
Чем скорее растет ордината кривой, тем больше угол
— Сперва казалось, что это просто одна из трудных геометрических задач. Однако Декарт во второй книге своей «Геометрии» писал: