Читаем Воспитание машин. Новая история разума полностью

Так, например, в последние годы была практически решена проблема машинного зрения, причем настолько хорошо и надежно, что на дорогах уже появились автономные автомобили. Алгоритмы глубокого обучения формируют иерархию все более абстрактных признаков, помогающих распознавать ситуации и моделировать пространственные сцены, заодно помогая нам понять и общие принципы работы сенсорного интеллекта.

Вслед за умением ориентироваться в мире приходит черед управлению поведением роботов и освоению ими навыков абстрактного мышления[88]. Возникает масштабный платежеспособный спрос на создание искусственной психики роботов. Современное машинное обучение пока что не смогло найти решения этой задачи.

В нашем понимании именно науки о мозге способны помочь преодолеть этот важный технологический барьер. Надо только суметь взглянуть на мозг с точки зрения машинного обучения – отвлечься от субстрата мозга и сосредоточиться на алгоритмах его обучения. Особенно важна вычислительная архитектура мозга, скопировав которую мы как раз и сможем получить искусственную психику роботов.

Обратная инженерия мозга

Какова роль наук о мозге в предлагаемой общей исследовательской программе? Кратко ее можно сформулировать как обратную инженерию мозга, а именно – реконструкцию его вычислительной архитектуры.

Такая постановка задачи для нейрофизиологов не нова. Схожую исследовательскую программу предлагал, например, Дэвид Марр в 1970-х годах. Напомним в этой связи, что Марр различал три уровня описания сложных систем:

● вычислительная архитектура – функциональное назначение подсистем в системе;

● алгоритмический уровень – алгоритмы достижения целей подсистем;

● уровень реализации – механизмы, реализующие эти алгоритмы.

Нейрофизиологам непосредственно доступен лишь нижний уровень описания – как конкретные нейроны или нейронные ансамбли взаимодействуют друг с другом. Как правило, большинство исследований так и остается на этом описательном уровне.

Реже удается разгадать алгоритмы работы каких-то подсистем мозга и понять логику их конструкции. Например, работу мозжечка можно понять, представив его как гигантский персептрон Розенблатта[89], а гиппокамп неплохо описывается моделью ассоциативной памяти Хопфилда[90]. Наконец, сегодня мы в основном понимаем и принципы работы основной подсистемы нашего мозга – неокортекса, содержащего сотни тысяч самоорганизующихся карт признаков, в которых кортикальные колонки формируют и распознают различные категории[91].

Однако истинное понимание принципов работы мозга возможно лишь с выходом на более высокий архитектурный уровень его целостного описания. А именно: выявление назначения и способов взаимодействия основных подсистем мозга – коры, базальных ганглий, таламуса, мозжечка, стволовых структур и т. д. – с пониманием алгоритмов их работы и обучения. Недаром Дэвид Марр отмечал, что, «хотя верхний уровень по большей части игнорируется, именно он является наиболее важным»[92]. Обратный инжиниринг вычислительной архитектуры мозга является, с нашей точки зрения, центральной задачей нейрофизиологии в рамках предлагаемой исследовательской программы.

В этой связи особое значение, с точки зрения автора, имеет архитектура кортико-стриарной системы мозга приматов, управляющей нашим поведением[93]. Приматы интересны тем, что архитектура мозга у них отличается от остальных млекопитающих: количество нейронов в их мозге пропорционально его массе, тогда как у остальных млекопитающих – массе2/3. Иначе говоря, у приматов число нейронов растет с ростом массы мозга гораздо быстрее, чем у остальных млекопитающих. В результате у больших приматов, включая людей, в мозге намного больше нейронов, чем у других млекопитающих с аналогичным по весу мозгом. Поэтому-то наш мозг и обладает такими уникальными вычислительными возможностями. Если бы мы не были приматами, чтобы иметь такое же, как у нас, число нейронов, наш мозг должен был бы весить 30 кг![94]

В качестве примера на базе предложенной автором реконструкции архитектуры мозга приматов[95] в лаборатории когнитивных архитектур МФТИ в настоящее время разрабатывается модель искусственной психики ADAM (Adaptive Deep Autonomous Machine) «по образу и подобию» человеческой. Подчеркнем, что именно обратный инжиниринг кортико-стриарной системы помог нам преодолеть существенный технологический барьер и предложить схему обучения иерархическому управлению. До сих пор эта проблема не поддавалась решению[96].

Почему бы нам теперь не начать создавать и более реалистичные модели психики различных животных, с тем чтобы воспроизвести их поведение в реальных экспериментах? Машинное обучение впервые предоставляет нам способ воссоздать психику животных и тем самым убедиться в том, что мы ее действительно понимаем. А там уже недалеко и до понимания человеческой психики.


Моделирование психики

Перейти на страницу:

Похожие книги

Цивилизационные паттерны и исторические процессы
Цивилизационные паттерны и исторические процессы

Йохан Арнасон (р. 1940) – ведущий теоретик современной исторической социологии и один из основоположников цивилизационного анализа как социологической парадигмы. Находясь в продуктивном диалоге со Ш. Эйзенштадтом, разработавшим концепцию множественных модерностей, Арнасон развивает так называемый реляционный подход к исследованию цивилизаций. Одна из ключевых его особенностей – акцент на способности цивилизаций к взаимному обучению и заимствованию тех или иных культурных черт. При этом процесс развития цивилизации, по мнению автора, не всегда ограничен предсказуемым сценарием – его направление может изменяться под влиянием креативности социального действия и случайных событий. Характеризуя взаимоотношения различных цивилизаций с Западом, исследователь выделяет взаимодействие традиций, разнообразных путей модернизации и альтернативных форм модерности. Анализируя эволюцию российского общества, он показывает, как складывалась установка на «отрицание западной модерности с претензиями на то, чтобы превзойти ее». В представленный сборник работ Арнасона входят тексты, в которых он, с одной стороны, описывает основные положения своей теории, а с другой – демонстрирует возможности ее применения, в частности исследуя советскую модель. Эти труды значимы не только для осмысления исторических изменений в домодерных и модерных цивилизациях, но и для понимания социальных трансформаций в сегодняшнем мире.

Йохан Арнасон

Обществознание, социология
Живым голосом. Зачем в цифровую эру говорить и слушать
Живым голосом. Зачем в цифровую эру говорить и слушать

Сегодня мы постоянно обмениваемся сообщениями, размещаем посты в социальных сетях, переписываемся в чатах и не замечаем, как экраны наших электронных устройств разъединяют нас с близкими. Даже во время семейных обедов мы постоянно проверяем мессенджеры. Стремясь быть многозадачным, современный человек утрачивает самое главное – умение говорить и слушать. Можно ли это изменить, не отказываясь от достижений цифровых технологий? В книге "Живым голосом. Зачем в цифровую эру говорить и слушать" профессор Массачусетского технологического института Шерри Тёркл увлекательно и просто рассказывает о том, как интернет-общение влияет на наши социальные навыки, и предлагает вместе подумать, как нам с этим быть.В формате PDF A4 сохранён издательский дизайн.

Шерри Тёркл

Обществознание, социология