Читаем Воспитание машин. Новая история разума полностью

Итак, понимание вычислительной архитектуры мозга действительно полезно для создателей действующих моделей искусственной психики. А с появлением таких моделей у нас возникает уникальная возможность тестирования различных теоретических представлений о том, как устройство мозга определяет поведение животных и человека, то есть наведения мостов между нейрофизиологией и психологией, а затем перехода к психолингвистике и логике.

Планирование и проведение экспериментов с искусственной психикой объединенными командами представителей разных наук как раз и составляет основное содержание практических проектов в рамках предлагаемой исследовательской программы. Основная задача – воспроизвести с помощью постепенного усложнения искусственной психики эволюцию когнитивных способностей млекопитающих от грызунов к приматам и далее – к человеку.

Начинать естественно с самого простого: воспроизвести основные поведенческие паттерны «искусственной мышки». Примером могут быть опыты с поиском пищи в лабиринтах, открыванием кормушек с помощью различных приспособлений и другими элементами дрессуры. В более сложной постановке можно изучать игровое поведение разных агентов, скажем хищников и их жертв («кошки-мышки»), вместе с исследованием обучения различным навыкам выживания в искусственных средах. Естественно, речь идет не только об индивидуальном обучении животных, но и о коэволюции параметров их мозга, а именно о том, какие врожденные рефлексы оказываются наиболее полезными для выживания «кошек» и «мышек».

Аналогично можно моделировать кооперативное поведение стайных животных в условиях, когда они могут обмениваться сигналами. Например, каждый агент, кроме обычных сенсоров и актуаторов, получает возможность демонстрировать и воспринимать ограниченный набор символов – язык поз и других способов демонстрации намерений. В результате у агентов должна развиваться способность распознавать и использовать намерения других агентов с помощью такой сигнальной системы, то есть то, что обычно называют theory of mind.

С практической точки зрения все такие эксперименты мало чем отличаются от существующих программ обучения искусственных агентов игре в StarCraft и другие игры. Для понимания эволюции мозга необходимо будет создать соответствующий набор тестовых задач типа OpenAI Gym, с помощью которого разные исследовательские группы могли бы сравнивать между собой достоинства различных архитектур искусственной психики и их способность моделировать как можно большее число реальных экспериментов с различными животными[97].

До определенного предела, скажем до уровня приматов, возможности искусственной психики можно наращивать экстенсивно – за счет увеличения числа вычислительных модулей и слоев обработки данных. Все-таки число нейронов мозга мыши (70 млн), кошки (700 млн) и шимпанзе (30 млрд) различаются на порядки. Но всего лишь трехкратная разница между мозгом шимпанзе и человека (менее 90 млрд нейронов) не настолько значительна, чтобы объяснить пропасть между интеллектом шимпанзе и разумом человека. Гораздо важнее то, что последний использует знания, накопленные тысячами поколений наших предков, инсталлированные в индивидуальную психику человека в процессе воспитания. Да, чем-то мозг шимпанзе от мозга человека отличается качественно, а именно способностью к овладению языком и абстрактным мышлением, необходимым для восприятия культурного наследия. Возможно, трехкратное увеличение размеров мозга как раз и позволило праязыку «поместиться» в мозге наших предков, обеспечив качественный переход от индивидуального интеллекта к коллективному разуму.

Способность машин обучаться естественным языкам и свободно общаться на них – важнейший технологический барьер на пути к сильному интеллекту. Существующие глубокие нейросети могут «понимать» значения слов и даже генерировать связные тексты, трудно отличимые от созданных человеком[98]. Однако пока что они не способны по-настоящему «держать мысль», то есть мыслить по-человечески. Им явно не хватает способности к моделированию окружающего мира и к логическому мышлению.

Логика, включая логический ИИ, понимает под мышлением математически выверенные операции с символами вместо предметов. Однако логический интеллект не порождается индивидуальным мышлением. Напротив, он нормирует индивидуальное мышление через язык и культуру в процессе воспитания. Мы осваиваем одну общую логику, а не изобретаем ее заново каждый свою. Этим же путем воспитания должны пойти и роботы.

Соответственно, если мы действительно хотим понять человеческий разум и создать роботов, способных на равных вписаться в человеческую цивилизацию, наша исследовательская программа должна развить теорию машинного обучения до теории машинного воспитания, а именно ответить на вопрос: каким образом приобщить роботов к человеческим знаниям, ценностям и культуре? Здесь мы следуем концепции Л. С. Выготского о решающей роли процесса воспитания – инсталляции понятий коллективного человеческого разума в индивидуальный интеллект.

Перейти на страницу:

Похожие книги

Цивилизационные паттерны и исторические процессы
Цивилизационные паттерны и исторические процессы

Йохан Арнасон (р. 1940) – ведущий теоретик современной исторической социологии и один из основоположников цивилизационного анализа как социологической парадигмы. Находясь в продуктивном диалоге со Ш. Эйзенштадтом, разработавшим концепцию множественных модерностей, Арнасон развивает так называемый реляционный подход к исследованию цивилизаций. Одна из ключевых его особенностей – акцент на способности цивилизаций к взаимному обучению и заимствованию тех или иных культурных черт. При этом процесс развития цивилизации, по мнению автора, не всегда ограничен предсказуемым сценарием – его направление может изменяться под влиянием креативности социального действия и случайных событий. Характеризуя взаимоотношения различных цивилизаций с Западом, исследователь выделяет взаимодействие традиций, разнообразных путей модернизации и альтернативных форм модерности. Анализируя эволюцию российского общества, он показывает, как складывалась установка на «отрицание западной модерности с претензиями на то, чтобы превзойти ее». В представленный сборник работ Арнасона входят тексты, в которых он, с одной стороны, описывает основные положения своей теории, а с другой – демонстрирует возможности ее применения, в частности исследуя советскую модель. Эти труды значимы не только для осмысления исторических изменений в домодерных и модерных цивилизациях, но и для понимания социальных трансформаций в сегодняшнем мире.

Йохан Арнасон

Обществознание, социология
Живым голосом. Зачем в цифровую эру говорить и слушать
Живым голосом. Зачем в цифровую эру говорить и слушать

Сегодня мы постоянно обмениваемся сообщениями, размещаем посты в социальных сетях, переписываемся в чатах и не замечаем, как экраны наших электронных устройств разъединяют нас с близкими. Даже во время семейных обедов мы постоянно проверяем мессенджеры. Стремясь быть многозадачным, современный человек утрачивает самое главное – умение говорить и слушать. Можно ли это изменить, не отказываясь от достижений цифровых технологий? В книге "Живым голосом. Зачем в цифровую эру говорить и слушать" профессор Массачусетского технологического института Шерри Тёркл увлекательно и просто рассказывает о том, как интернет-общение влияет на наши социальные навыки, и предлагает вместе подумать, как нам с этим быть.В формате PDF A4 сохранён издательский дизайн.

Шерри Тёркл

Обществознание, социология