Мы можем иначе сформулировать формулу площади прямоугольника: не «ширина × высота», а «основание × (30 – основание)».
На графике сверху каждая точка обозначает возможный прямоугольник, зарождающуюся империю Элиссы. На левом краю находятся глупые планы, такие как 1 × 29, на правом – их зеркальные отражения, скажем 29 × 1. Благодаря каждому из них получается очень узкая территория площадью 29 квадратных единиц, зауженная до такой степени, что даже Бостон покажется просторным.
Почему получаются такие нежизнеспособные результаты? Просто рассмотрите производные. Отношение
Тем временем
Увеличьте основание, и площадь чуть-чуть изменится. Увеличьте высоту, и она взлетит ввысь. Если пользоваться другими терминами,
Более умный план? Тратить, пока производные не станут равны. Это произойдет, как показывает график, когда стороны станут равны, в квадрате 15 × 15.
Решили ли мы проблему Элиссы? Не пора ли перерезать красную ленточку и начать занимать места на парковке? Не так быстро – у принцессы в запасе есть еще один трюк. Вместо того чтобы раскладывать полоски из бычьей кожи по открытой равнине, что, если ей отгородить участок на побережье Средиземного моря? Таким образом, вместо того чтобы выкладывать четыре стороны, ей понадобятся только три.
Ранее Элисса могла позволить себе квадрат 15 × 15. Сейчас она может отгородить область 20 × 20. Площадь увеличивается с 225 единиц до 400, город обрастает пригородами. Теперь-то мы уже можем выбирать мэра и, наконец, начинать жаловаться на строительство?
Однако, чтобы проверить, вернемся к производным. Вот что говорит нам
Не так уж плохо! И можно предположить, что то же самое происходит с
Черт возьми! Дополнительное приращение основания увеличит площадь на 20 таких единиц. Производные не равны!
По результатам проверки это имеет смысл. Каждый маленький участок высоты тянет за собой две стены, тогда как каждый участок основания – только одну. Таким образом, ширина «дешевле» в два раза. Квадратная форма перераспределяет ресурсы: мы ищем форму, при которой обе производные равны.
Теперь пора перейти к другому графику:
Оказывается, максимальную площадь займет прямоугольник 15 × 30, охватывающий 450 квадратных единиц.
Триумф, как ни крути! Элисса превратила свой перенаселенный Манхэттен из бычьей шкуры в просторный Хьюстон. Но, использовав кое-что под названием «вариационное исчисление», подразумевающее различные виды кривых, Элисса может получить больше площади от своих ничего не подозревающих партнеров по торговле. Это дает нам в действительности самое оптимальное решение – полукруг, диаметром которого является береговая линия.
Приблизительная площадь этой фигуры – 573 квадратные единицы. Совсем неплохо для оптимизации за один день.
Все это, как утверждают римские историки, произошло в конце IX в. до н. э. В последующие годы на полукруглом участке земли появился процветающий и сильный портовый город-государство под названием Карфаген. Он был могущественной державой, пока Рим не повел против него войны и, в конце концов, с трех попыток, не одолел его. Многие годы Катон Старший заканчивал каждую свою речь словами: «Карфаген должен быть разрушен» («Delenda est Carthago»), что, должно быть, звучало несколько странно, скажем, на открытии нового парка.
В эпической поэме Вергилия «Энеида» Элисса выступает как любовница титулованного Энея, основателя Рима. Вергилий называет ее Дидоной. Под этим именем она вошла в основной состав канона западной культуры: 11 раз ее упоминал Шекспир, она стала героиней 14 опер, а также появилась в компьютерной игре «Цивилизация». Как говорил Дидоне Эней, «твоя честь, твое имя, твои заслуги будут жить вечно».
В наши дни город Элиссы с периметром из бычьей шкуры является прибрежным пригородом Туниса.
XII
Земля, опустевшая из-за скрепок
Предупреждаю заранее: я собираюсь закончить эту главу длинной, укрепляющей серией обязательных упражнений. Вот такую книгу для чтения на пляже вы купили. Если только – здесь я просто немного подтруниваю – вы не обменяете эту домашнюю работу на книгу апокалиптических комиксов.
Правда? Ну, делайте, как вам нравится.
В качестве компромисса давайте начнем эту главу, как мне нравится: с классической проблемы оптимизации, которую можно найти в любой книге по математическому анализу, начиная с «железного века» учебников по этой науке. Задача звучит примерно так: «Два положительных числа при умножении дают 100. Какой может быть их наименьшая сумма?»
Для начала мы можем попробовать различные пары чисел и посмотреть, что они дают в сумме.