Чтобы создать трубу, вначале начертите кривую, соответствующую уравнению
Вскоре
К тому времени, когда
Тем не менее кривая движется, так и не пересекая ось, к неисчислимому горизонту, который мы называем «бесконечность».
Теперь мы должны закрутить эту кривую вокруг оси
Как и любой трехмерный объект, «труба» позволяет провести два вида измерений. Во-первых, мы можем измерить ее объем – то есть какое количество кубических единиц воды требуется, чтобы ее наполнить. Во-вторых, мы можем измерить площадь ее поверхности – иначе говоря, сколько рулонов оберточной бумаги потребуется, чтобы ее завернуть.
Итак, сперва объем. В физической реальности бесконечный объект не может иметь конечный объем; нам нужна труба, которая становится тоньше атома, так что даже самые лучшие моторные навыки не позволят ее удержать. Но математика располагает другим видом реальности, где такое проявление ловкости – дело обычное. Поэтому, используя стандартные методы, мы получаем интеграл
Теперь площадь поверхности. Интеграл получается несколько более ужасающим:
Вот мы и оказались на пороге противоречия. У трубы Гавриила есть конечный объем, то есть вы вольны заполнить ее краской, вы это можете. Тем не менее у нее нет конечной площади поверхности: при всем желании у вас не получится ее покрасить.
Но… если вы наполните ее краской, не будет ли это значить, что каждая точка поверхности окрашена?
Как и то и другое одновременно может быть правильным?
Первым, кто исследовал эту парадоксальную фигуру, был итальянский математик XVII в. Эванджелиста Торричелли. Вместе со своими приятелями Галилеем и Кавальери он прокладывал «королевскую дорогу через математические чащи», используя новомодную на тот момент математику бесконечно малых величин. «Очевидно, – писал Кавальери, – что плоские фигуры должны пониматься как куски, сплетенные из параллельных линий, а объемные тела – как книги, состоящие из параллельных страниц».
Эти ученые были поглощены бесконечными суммами, бесконечно тонкими элементами и странными объектами, такими как труба Гавриила, которая также известна как «труба Торричелли».
Это был математический анализ, выбирающийся из своей колыбели.
В то время орден иезуитов создал достойную восхищения систему университетов по всей Европе. Это были не просто хорошие учебные заведения, это были
Но не просто любая математика: она должна была быть евклидовой. Евклидова геометрия развилась с помощью четкой логики от самоочевидных предположений до нерушимых заключений без единого сбоя или парадокса. «Теоремы Евклида, – говорил Клавий, – сохраняют… свою истинную чистоту и неоспоримую несомненность». Иезуиты видели у Евклида модель самого общества, где власть папы является неопровержимой аксиомой.
Что касается работы Торричелли, иезуиты не относились к числу его фанатов. Историк Амир Александер в своей книге «Бесконечно малые: как опасная математическая теория сформировала мир» (Infinitesimal: How a Dangerous Mathematical Theory Shaped the World) объясняет: «Тогда как евклидова геометрия являлась строгой, чистой и неопровержимо верной, новые методы были наполнены парадоксами и противоречиями и с равной вероятностью вели как к ошибке, так и к истине». Иезуиты считали трубу Гавриила анархистской пропагандой, угрозой порядку. «У них была тоталитарная мечта о неопровержимой истине и цели, которая не оставляла места сомнениям и спорам», – говорит Александер. Как подытожил Игнатий[62]
, еще один иезуит того времени: «То, что кажется нам белым, черно, если так говорит Церковь».