Я читал «Нечто и еще больше…» сразу после книги Юджинии Чанг «За рамками вечности» (Beyond Infinity), и это привело к забавному наложению. Чанг – математик-исследователь – написала легкую, не отягощенную техническими подробностями научно-популярную книгу, наполненную аналогиями, в дружественной манере. Уоллес – романист – предпочел насадить непроходимые заросли сносок. И воспринимается это намного хуже. «Люди спрашивают, о ком именно думал Уоллес, когда писал, – размышлял философ Давид Папино в обзоре для
В этом как раз фишка Дэвида Фостера Уоллеса: он никогда, абсолютно никогда не рассказывает меньше, чем знает.
Кажется, по большей части Дэвида Фостера Уоллеса привлекали в математике именно те качества, которые отталкивают от нее других, причем, возможно, именно потому, что у других они вызывают неприязнь. «Современная математика, как пирамида, – писал он, – и ее широкое основание часто не вызывает веселья… Возможно, математика – типичный пример того, к чему сперва надо привыкнуть».
Возьмем, скажем, старшую двоюродную сестру теоремы о среднем значении: теорему о промежуточном значении. Мои студенты стараются рассматривать ее как сияющую очевидность, облаченную в одежды математического пустословия. В нормальных выражениях она говорит о том, что если в прошлом году ваш рост был 150 см, а в этом – 156 см, то где-то посередине был момент, когда ваш рост составлял 153 см.
Здесь ничего новенького.
В учебниках эта теорема представлена следующим образом: если функция
Почему целое цунами символов выражает такую несомненную вещь?
Надо сказать, что в XIX в. – том периоде, который Дэвид Фостер Уоллес рассматривал в «Нечто и еще больше…», – математиков начали занимать новые вопросы, связанные с бесконечностью. Какие суммы стремятся к разумному объяснению? А какие нет? Что мы действительно знаем и как мы это узнали? С педантичной осторожностью сообщество математиков пыталось найти пути перестройки математического анализа, обосновав его не геометрией или интуицией, а арифметическими неравенствами и точными алгебраическими положениями. Именно тогда теоремы о промежуточном значении и среднем значении вошли в моду. Если вы хотите шаг за шагом доказать каждый факт в математическом анализе, то эти теоремы необходимы.
Но неужели это единственно правильная «математика»? Неужели все более ранние поколения ученых от Архимеда и Лю Хуэя до Аньези спотыкаясь двигались к «правильным» представлениям, обладающим аналитической строгостью, как древние язычники в чистилище Данте ждали своего часа до рождения Христа?
Когда Дэвид Фостер Уоллес прославлял математику, он имел в виду один определенный раздел этой науки, появившийся на свет в XIX в. и более близкий к философии (которую Уоллес изучал в колледже), чем к геометрии, комбинаторике и т. д. Этот раздел он называл «пахлавой абстракций исполинских размеров», имея в виду сладкий вкус дерзновенных устремлений, а не его устрашающую бессмысленность для студентов, многих из которых начинает тошнить от одних только ключевых понятий. Но Уоллес щеголяет ими на протяжении всего романа, и единственная возможная цель этого – сбить с толку и произвести впечатление. Мне этот раздел тоже нравился в колледже, но с тех пор я отошел от него, ощущая, что не стал от этого беднее, ведь изысканная эстетика не все, чем может восхищаться математик.
Математика – узор, сотканный из множества нитей: формальных и интуитивных, простых и значительных, мгновенных и вечных. Люби́те ту нить, которая вам нравится. Но не принимайте ее за весь гобелен.
XXVII
Труби, Гавриил, труби!
В старой шутке спрашивается, способен ли Господь, будучи всемогущим, создать такой тяжелый камень, который он сам не сможет поднять. В вопросе содержится теологическая ловушка. Ответите «нет», и вы недооцените способность Господа творить; скажете «да», и вы неуважительно выскажетесь о его физической силе. Это называется «парадокс» – рана, которую логика наносит сама себе. Это довод, в котором кажущиеся правильными предположения приводят с помощью такой же с виду правильной логики к совершенно идиотическим заключениям.
И если вы думаете, что теология кишит парадоксами, то подождите, пока встретитесь с математикой.
«Труба Гавриила» (или «рог Гавриила»), мой любимый парадокс в математическом анализе, получил свое название в честь архангела Гавриила. Его труба, которая передает на землю послания с небес, чудесна и ужасна, конечна и бесконечна; это связующее звено между смертным и небесным. Такое название очень подходит объекту, обладающему внутренним противоречием.