Читаем Все формулы мира. Как математика объясняет законы природы полностью

Загадку удалось разгадать, предположив, что свет представляет собой поток частиц – фотонов. Таким образом, энергия излучения передается электрону при индивидуальном взаимодействии двух частиц. Если свет имеет большую длину волны (т. е. низкую частоту, λν = с), то энергия фотонов ниже (E = hν, здесь h – постоянная Планка). Поэтому, несмотря на большую мощность потока (много фотонов), каждый из них несет маленькую энергию и не может оказать сильного воздействия на электрон: ниже некоторой энергии вообще не может его вырвать, а если вырывает, то не может придать большую энергию этой частице.

Парадокс с фотоэффектом возник раньше, чем была осознана проблема ультрафиолетовой катастрофы, но его удалось разрешить на несколько лет позже. В самом конце XIX века, в 1900 г., Макс Планк смог объяснить, почему формула Рэлея – Джинса, описывающая распределение энергии излучения в спектре так называемого абсолютно черного тела (им может быть, с некоторой точностью, нагретый металлический шар или плотное облако газа), дает «безумный» (катастрофический) результат для коротких (ультрафиолетовых) волн. Гипотеза Планка состояла в том, что свет может испускаться лишь порциями – квантами. Энергия одного кванта пропорциональна частоте, а коэффициент пропорциональности впоследствии назвали постоянной Планка. Отметим, что это одна из трех самых важных констант в современной физике (две другие – это скорость света и гравитационная постоянная).

Теперь возник другой парадокс, с которым нам жить: свет одновременно и волна, и частица. При этом нельзя представлять себе излучение как поток неделимых частиц: можно поглотить порцию электромагнитных волн одной частоты и переизлучить на другой частоте. Разумеется, число квантов до и после переизлучения будет разным, если сохраняется полная энергия квантов. Иначе говоря, электромагнитная волна как таковая не имеет какой-то минимальной порции. Эйнштейн пояснял его так: «Если пиво всегда продают в бутылках, содержащих пинту, отсюда вовсе не следует, что пиво состоит из неделимых частей, равных пинте».

У электромагнитных волн высокой частоты (гамма- и рентгеновский диапазоны) в большей степени проявляются свойства частиц, а в радиодиапазоне, наоборот, заметнее волновые свойства. Например, в астрономии детекторы излучения в разных диапазонах спектра работают по принципиально разным методикам. В радиодиапазоне, где длина волны велика, приборы регистрируют именно волны (т. е. колебания электромагнитного поля), а детекторы гамма-квантов похожи на детекторы элементарных частиц. Однако в случае и малой, и большой длины волны можно поставить эксперименты, где будут проявляться как корпускулярные, так и волновые свойства[31]. Таким образом, «двойственная» природа света стала надежно подтвержденным фактом.

Думаете, на этом все закончилось? Вовсе нет – ягодки были еще впереди. Если про свет со времен Ньютона и Гримальди спорили, то про электроны (а заодно и другие частицы) – нет. Это же частицы! Оказалось, тоже не совсем. Эксперименты показали, что электроны также демонстрируют дифракцию и интерференцию, равно как и другие элементарные частицы. И даже не совсем элементарные. Современные эксперименты позволяют увидеть волновые свойства даже у довольно крупных молекул[32]. А в 2018 г. волновые свойства удалось непосредственно продемонстрировать и у частиц антивещества[33].

Такие «волны материи» называют волнами де Бройля в честь Луи де Бройля, впервые построившего соответствующую теорию. В общем и целом она заключается в том, что если две частицы имеют одинаковые скорости, то чем больше масса частицы, тем меньше длина соответствующей ей волны. Соответственно, тем сложнее наблюдать волновые свойства таких объектов. Если масса частицы равна так называемой массе Планка (примерно 0,00001 грамма), то соответствующая ей длина волны равна так называемой планковской длине (около 10–33 см)[34].

Интересно представить себе, как мы переносимся в XVII век, усаживаем за один стол Ньютона и Гримальди и объясняем им (видимо, на латыни, придется брать с собой продвинутого гуманитария в качестве переводчика), что оба они правы. Конечно, педант вспомнит, что в год смерти Гримальди (1663) Ньютону было всего 20 лет, но это не остановит наш полет фантазии.

Описание поведения света и частиц существенно усложнилось за сотни лет, разделяющих времена Рене Декарта, впервые объяснившего радугу, и Эрвина Шрёдингера, заложившего основы волновой квантовой механики. Готов поспорить, что прогресс в этой области может заметить даже неспециалист, просто на глазок сравнив публикации XVII и XX веков.

А. ПО МЕРЕ РАЗВИТИЯ МАТЕМАТИКИ И ТЕОРЕТИЧЕСКОЙ ФИЗИКИ УРАВНЕНИЯ СТАНОВЯТСЯ СЛОЖНЕЕ: В ФИЗИКЕ ПОЯВЛЯЮТСЯ НОВЫЕ ПРОЦЕССЫ И ЯВЛЕНИЯ (ВКЛЮЧАЯ ГИПОТЕТИЧЕСКИЕ), НУЖДАЮЩИЕСЯ В ОПИСАНИИ, А В МАТЕМАТИКЕ ВОЗНИКАЮТ НОВЫЕ МЕТОДЫ И КОНСТРУКЦИИ.

Б. ФИЗИЧЕСКИЕ МОДЕЛИ ЯВЛЕНИЙ СТАНОВЯТСЯ СО ВРЕМЕНЕМ ВСЕ СЛОЖНЕЕ, ПОСКОЛЬКУ ОПИСАНИЕ СТАНОВИТСЯ БОЛЕЕ ДЕТАЛЬНЫМ И КОМПЛЕКСНЫМ: В НЕГО ВКЛЮЧАЮТСЯ ВСЕ НОВЫЕ ЭФФЕКТЫ И ВСЕ БОЛЕЕ МЕЛКИЕ ДЕТАЛИ.


Перейти на страницу:

Похожие книги

Биология добра и зла. Как наука объясняет наши поступки
Биология добра и зла. Как наука объясняет наши поступки

Как говорит знаменитый приматолог и нейробиолог Роберт Сапольски, если вы хотите понять поведение человека и природу хорошего или плохого поступка, вам придется разобраться буквально во всем – и в том, что происходило за секунду до него, и в том, что было миллионы лет назад. В книге автор поэтапно – можно сказать, в хронологическом разрезе – и очень подробно рассматривает огромное количество факторов, влияющих на наше поведение. Как работает наш мозг? За что отвечает миндалина, а за что нам стоит благодарить лобную кору? Что «ненавидит» островок? Почему у лондонских таксистов увеличен гиппокамп? Как связаны длины указательного и безымянного пальцев и количество внутриутробного тестостерона? Чем с точки зрения нейробиологии подростки отличаются от детей и взрослых? Бывают ли «чистые» альтруисты? В чем разница между прощением и примирением? Существует ли свобода воли? Как сложные социальные связи влияют на наше поведение и принятие решений? И это лишь малая часть вопросов, рассматриваемых в масштабной работе известного ученого.

Роберт Сапольски

Научная литература / Биология / Образование и наука
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература
Она смеётся, как мать. Могущество и причуды наследственности
Она смеётся, как мать. Могущество и причуды наследственности

Книга о наследственности и человеческом наследии в самом широком смысле. Речь идет не просто о последовательности нуклеотидов в ядерной ДНК. На то, что родители передают детям, влияет целое множество факторов: и митохондриальная ДНК, и изменяющие активность генов эпигенетические метки, и симбиотические микроорганизмы…И культура, и традиции, география и экономика, технологии и то, в каком состоянии мы оставим планету, наконец. По мере развития науки появляется все больше способов вмешиваться в разные формы наследственности, что открывает потрясающие возможности, но одновременно ставит новые проблемы.Технология CRISPR-Cas9, используемая для редактирования генома, генный драйв и создание яйцеклетки и сперматозоида из клеток кожи – список открытий растет с каждым днем, давая достаточно поводов для оптимизма… или беспокойства. В любом случае прежним мир уже не будет.Карл Циммер знаменит своим умением рассказывать понятно. В этой важнейшей книге, которая основана на самых последних исследованиях и научных прорывах, автор снова доказал свое звание одного из лучших научных журналистов в мире.

Карл Циммер

Научная литература
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы

Как появились университеты в России? Как соотносится их развитие на начальном этапе с общей историей европейских университетов? Книга дает ответы на поставленные вопросы, опираясь на новые архивные источники и концепции современной историографии. История отечественных университетов впервые включена автором в общеевропейский процесс распространения различных, стадиально сменяющих друг друга форм: от средневековой («доклассической») автономной корпорации профессоров и студентов до «классического» исследовательского университета как государственного учреждения. В книге прослежены конкретные контакты, в особенности, между российскими и немецкими университетами, а также общность лежавших в их основе теоретических моделей и связанной с ними государственной политики. Дискуссии, возникавшие тогда между общественными деятелями о применимости европейского опыта для реформирования университетской системы России, сохраняют свою актуальность до сегодняшнего дня.Для историков, преподавателей, студентов и широкого круга читателей, интересующихся историей университетов.

Андрей Юрьевич Андреев

История / Научная литература / Прочая научная литература / Образование и наука