В качестве минимальной массы звезды возьмем 0,1
Это отношение примерно равно 0,00045. Учитывая, что за время существования Галактики в ней сформировалось около 300 млрд звезд, мы получим, что сейчас в ней должно быть около 135 млн черных дыр (заметим, что это очень близко к более точным расчетам). Типичная масса таких объектов – 5–10 масс Солнца. Это следует и из теории, и из наблюдения черных дыр в тесных аккрецирующих двойных системах.
При рождении черные дыры, в отличие от нейтронных звезд, в среднем не получают большую дополнительную скорость, связанную с асимметрией взрыва сверхновой (так называемый кик). Значит, они остаются в галактическом диске, и мы можем легко оценить их плотность в солнечной окрестности. Представим диск Галактики в виде цилиндра с радиусом около 15 кпк и толщиной около 1 кпк. Разделив его объем на количество черных дыр, получим объем, приходящийся на один объект, – это около 5000 кубических парсек. Значит, расстояние до ближайшей одиночной черной дыры будет порядка 10 пк.
Таким образом, черных дыр звездных масс в Галактике много, и они могут находиться не так уж далеко от нас. Вопрос в том, как их обнаружить.
В приложении 3 мы обсудили, что аккреция на черные дыры может приводить к выделению значительной энергии. Надо только найти эффективный источник вещества. Если компактный объект одиночный, т. е. бороздит просторы Галактики сам по себе, тогда единственным источником будет межзвездная среда[103]
.Плотность межзвездного вещества вблизи плоскости диска Галактики в солнечных окрестностях не слишком высока – около одного атома водорода в кубическом сантиметре. В молекулярных облаках это значение возрастает в десятки, а то и в сотни раз. Нам нужно оценить, с каким темпом черная дыра может захватывать это вещество.
Чаще всего, когда на популярной лекции заходит речь о черных дырах, выясняется, что хотя бы кто-то из слушателей полагает, что черные дыры – это такие пылесосы, которые «затягивают в себя все и когда- нибудь совсем все и затянут». Это совсем не так.
Действие черных дыр на другие тела определяется гравитацией. Если мимо черной дыры пролетает тело, то нам надо сравнить его кинетическую энергию, связанную с движением относительно компактного объекта, и гравитационную потенциальную энергию, связанную с взаимодействием между телами. Формулу для кинетической энергии все помнят:
Потенциальную энергию удобно считать отрицательной, и для нее выражение выглядит так:
где
Ясно, что если скорость слишком велика, то кинетическая энергия тоже будет велика, и, таким образом, полная энергия, равная сумме кинетической и потенциальной, будет больше нуля, т. е. система будет гравитационно несвязанной. Иными словами, тело пролетит мимо. Точно так же при большом расстоянии между телами –
Критическое расстояние
Однако мало тело захватить, ведь оно может просто вращаться вокруг черной дыры на устойчивой орбите (как Земля вокруг Солнца или Луна вокруг Земли). Телу нужно избавиться от вращения – потерять орбитальный момент. В системе двух тел такой возможности практически нет (исключение составляют приливы, а в случае черной дыры и атома водорода какие уж тут приливы!). Необходимо, чтобы вокруг центрального массивного объекта вращалось несколько тел, которые могли бы достаточно эффективно обмениваться энергией и орбитальным моментом. Тогда часть из них сможет перейти на более низкие орбиты и в конечном счете выпасть на центральный объект.
В случае аккреции вещества межзвездной среды захватывается газ, поэтому за счет вязкости можно обеспечить довольно эффективный отвод орбитального момента наружу. Взаимодействие частиц газа в потоке будет приводить к переносу орбитального момента прочь от гравитирующего центра, а вещество, потерявшее момент, будет течь в его сторону. Поэтому аккреция начинается, если вещество проникло под радиус гравитационного захвата. Теперь мы можем сделать простую оценку максимального темпа аккреции.
Итак, черная дыра массы