Читаем Все формулы мира. Как математика объясняет законы природы полностью

Заметим, что отклонение световых лучей как таковое – это не совсем «изобретение» общей теории относительности. Согласно ньютоновской модели, свет, если представить его себе как поток очень легких частиц (именно так себе представлял свет сам Ньютон), также должен отклоняться, только эффект будет в два раза меньше, чем в ОТО[105]. Наблюдения смещения положения звезд во время солнечных затмений (а затем и другие многочисленные наблюдения и эксперименты) показали, что верен расчет в рамках ОТО – при небольших углах отклонения работает формула



где δφ – угол, на который отклоняется свет, М – масса гравитационной линзы, а r – минимальное расстояние между траекторией светового луча и центром линзы.

Гравитационное линзирование встречается в астрономии в самых разных вариантах. В роли источника может выступать далекий квазар, а в роли гравитационной линзы – массивная галактика. Или же источником является далекая сверхновая, и ее свет линзируется на скоплении галактик. Мой любимый пример таков. Источником является аккреционный диск в далекой активной галактике, а его излучение линзируется на отдельных звездах более близкой галактики на луче зрения[106]. В такой поразительной ситуации мы можем измерить параметры диска (по сути, определить, как его температура меняется с радиусом).

Однако здесь нас будет интересовать случай так называемого микролинзирования. Микро-, потому что линза относительно легкая, это объект звездной массы. Источником в такой ситуации обычно является звезда нашей Галактики, и, конечно, в ней же находится и линза.

Если мы смотрим на какую-то случайно выбранную звезду, то понадобятся сотни тысяч лет, пока еще какой-то умеренно массивный объект (другая звезда, бурый карлик или компактный остаток) пролетит столь близко к лучу зрения, что вызовет заметный эффект.

Какие эффекты могут возникать при таком пролете? Во-первых, это просто смещение видимого положения звезды-источника. Такой случай называют астрометрическим линзированием. Наблюдать эффект очень трудно, так как он мал. Но иногда это удается (если знать, куда смотреть с помощью крупных телескопов), а кроме того, спутник Gaia вскоре должен представить много данных по таким явлениям. Но более известным является так называемое фотометрическое микролинзирование, к которому мы и перейдем.

Гравитационная линза всегда работает таким образом, что усиливает блеск источника. Для этого он должен оказаться на небольшом угловом расстоянии от линзы – внутри так называемого конуса Эйнштейна. Если считать, что источник расположен гораздо дальше линзы, то этот кружок на небе характеризуется угловым радиусом, вычисляемым по очень простой формуле (вот только вывод ее не так уж прост, и здесь мы его приводить не будем):



где dL– расстояние от наблюдателя до линзы, а М – ее масса.

Если подставить звездную массу и расстояние порядка нескольких тысяч световых лет, то мы получим угол примерно в несколько сотых угловой секунды. Вероятность того, что одна из звезд попадет в такой кружок, крайне мала, поэтому и надо ждать сотни тысяч лет, пока это произойдет. Но если уж такое случилось, то блеск звезды возрастает в несколько раз, что легко заметить.

С появлением цифровых приемников излучения, чья главная характеристика – число мегапикселей, астрономы научились сразу измерять блеск большого числа звезд. Это дало возможность начать специальные программы наблюдений, охотящихся за случаями микролинзирования. Сейчас счет зарегистрированным событиям идет на многие тысячи.

А что же черные дыры? Насколько часто в роли линзы может выступить такой объект? Чтобы в этом разобраться, нам надо сравнить количество и массы обычных звезд, черных дыр, а также нейтронных звезд и белых карликов[107].

Начнем с масс. Наблюдения говорят нам, что средняя масса белых карликов составляет примерно 0,6 солнечных, нейтронных звезд – 1,3, а черных дыр – 5–10. Для обычных звезд мы снова воспользуемся начальной функцией масс в виде:



Масса звезд в интервале dM в окрестности какой-то массы M равна просто произведению этой массы на dN. Соответственно, полная масса звезд будет пропорциональна интегралу



А полное количество звезд, как и выше в приложении 4А, – интегралу



Коэффициент пропорциональности одинаковый. Соответственно, средняя масса звезды, равная отношению массы всех звезд к их количеству, будет отношением этих интегралов. Учитывая, что нижний предел гораздо меньше верхнего, а под интегралом стоят отрицательные степени, по модулю большие единицы, мы получим, что отношение примерно равно . Это дает 0,38. Обычно используется средняя звездная масса, равная 0,3, поскольку в качестве нижнего предела подставляется неокругленное значение 0,08 солнечных масс.

Итак, звезды в среднем вдвое легче белых карликов, примерно в пять раз – нейтронных звезд и примерно в 20 раз – черных дыр. Это важно, так как для этих объектов будут пропорционально квадратному корню из массы изменяться параметры конусов Эйнштейна.

Перейти на страницу:

Похожие книги

Биология добра и зла. Как наука объясняет наши поступки
Биология добра и зла. Как наука объясняет наши поступки

Как говорит знаменитый приматолог и нейробиолог Роберт Сапольски, если вы хотите понять поведение человека и природу хорошего или плохого поступка, вам придется разобраться буквально во всем – и в том, что происходило за секунду до него, и в том, что было миллионы лет назад. В книге автор поэтапно – можно сказать, в хронологическом разрезе – и очень подробно рассматривает огромное количество факторов, влияющих на наше поведение. Как работает наш мозг? За что отвечает миндалина, а за что нам стоит благодарить лобную кору? Что «ненавидит» островок? Почему у лондонских таксистов увеличен гиппокамп? Как связаны длины указательного и безымянного пальцев и количество внутриутробного тестостерона? Чем с точки зрения нейробиологии подростки отличаются от детей и взрослых? Бывают ли «чистые» альтруисты? В чем разница между прощением и примирением? Существует ли свобода воли? Как сложные социальные связи влияют на наше поведение и принятие решений? И это лишь малая часть вопросов, рассматриваемых в масштабной работе известного ученого.

Роберт Сапольски

Научная литература / Биология / Образование и наука
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература
Она смеётся, как мать. Могущество и причуды наследственности
Она смеётся, как мать. Могущество и причуды наследственности

Книга о наследственности и человеческом наследии в самом широком смысле. Речь идет не просто о последовательности нуклеотидов в ядерной ДНК. На то, что родители передают детям, влияет целое множество факторов: и митохондриальная ДНК, и изменяющие активность генов эпигенетические метки, и симбиотические микроорганизмы…И культура, и традиции, география и экономика, технологии и то, в каком состоянии мы оставим планету, наконец. По мере развития науки появляется все больше способов вмешиваться в разные формы наследственности, что открывает потрясающие возможности, но одновременно ставит новые проблемы.Технология CRISPR-Cas9, используемая для редактирования генома, генный драйв и создание яйцеклетки и сперматозоида из клеток кожи – список открытий растет с каждым днем, давая достаточно поводов для оптимизма… или беспокойства. В любом случае прежним мир уже не будет.Карл Циммер знаменит своим умением рассказывать понятно. В этой важнейшей книге, которая основана на самых последних исследованиях и научных прорывах, автор снова доказал свое звание одного из лучших научных журналистов в мире.

Карл Циммер

Научная литература
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы

Как появились университеты в России? Как соотносится их развитие на начальном этапе с общей историей европейских университетов? Книга дает ответы на поставленные вопросы, опираясь на новые архивные источники и концепции современной историографии. История отечественных университетов впервые включена автором в общеевропейский процесс распространения различных, стадиально сменяющих друг друга форм: от средневековой («доклассической») автономной корпорации профессоров и студентов до «классического» исследовательского университета как государственного учреждения. В книге прослежены конкретные контакты, в особенности, между российскими и немецкими университетами, а также общность лежавших в их основе теоретических моделей и связанной с ними государственной политики. Дискуссии, возникавшие тогда между общественными деятелями о применимости европейского опыта для реформирования университетской системы России, сохраняют свою актуальность до сегодняшнего дня.Для историков, преподавателей, студентов и широкого круга читателей, интересующихся историей университетов.

Андрей Юрьевич Андреев

История / Научная литература / Прочая научная литература / Образование и наука