Отметим, что при уже упоминавшейся массе 1026
г температура будет примерно равна современной температуре реликтового излучения, заполняющего всю вселенную (в прошлом температура была выше). Так что, даже если мы сейчас поместим черную дыру в совсем пустую область космоса, она все равно будет расти за счет поглощения фотонов реликта при массе больше 1026 г.Итак, у нас есть температура, значит, в первом приближении мы можем посчитать светимость[112]
. Для теплового излучения сферы радиусаНапомним, что постоянная Стефана – Больцмана равна:
В качестве радиуса излучающей поверхности подставим шварцшильдовский радиус. Затем светимость запишем в таком виде:
т. е. мощность излучения определяется темпом потери массы. Тогда мы сможем записать:
Проведем интегрирование от начальной массы M до нуля (полное испарение) и для времени полного испарения получим:
Точная формула выглядит так:
Мы снова с точностью до численных коэффициентов получили верный результат!
Можно получить его и несколько иначе. Пусть энергия уносится квантами электромагнитного излучения (напомним, что на первых этапах испарения, пока температура недостаточно велика, частицы не рождаются – только излучение). Энергия одного кванта равна
Значит:
Нам надо оценить время излучения всей массы черной дыры, т. е. время потери энергии
Получим:
Иначе говоря, снова тот же результат, верный с точностью до небольшого численного коэффициента.
Когда температура черной дыры становится достаточно высокой для того, чтобы рождались не только кванты электромагнитного излучения, но и частицы, коэффициент в формуле немного изменяется. Поэтому для совсем легких черных дыр формула работает лишь примерно: они испаряются несколько быстрее.
Что здесь для нас важно с точки зрения астрофизики? Испаряющиеся черные дыры являются уникальными источниками, проявления которых можно надеяться выявить. Здесь астрономы идут разными путями.
Во-первых, можно искать сами вспышки, связанные с последними моментами жизни черных дыр, причем как в гамма-диапазоне (ведь температура растет с падением массы, и на финальных стадиях испускается много гамма-излучения), так и в других, в первую очередь в радиодиапазоне. К сожалению, ничего пока не обнаружено. Заметим, что на финальных стадиях, несмотря на высокую температуру, светимость объекта невелика (намного меньше солнечной). Действительно, ведь от черной дыры почти ничего не осталось – за последнюю десятую долю секунды испаряются последние тонны вещества (а за последнюю минуту – несколько сотен тонн). Поэтому вспышки в гамма-диапазоне (где их легче искать) доступны с помощью современной аппаратуры лишь с расстояний порядка одного парсека и меньше.
Остроумный подход использовала коллаборация спутника Fermi[113]
. Допустим, мы могли пропустить вспышку (или ни один из аппаратов не смотрел в нужную сторону, или вспышка была слаба, или еще что-то помешало, например солнечная активность). Но за годы до момента своего исчезновения достаточно близкая черная дыра является заметным гамма-источником, чьи светимость и спектр меняются по более или менее известному закону. А кроме того, поскольку объект достаточно близкий, можно заметить его смещение на небе. Соответственно, был проведен поиск источников, которые исчезли за несколько лет мониторинга всего неба в гамма-диапазоне обсерваторией «Ферми», и при этом определенным образом эволюционировали их светимости и спектральные параметры, а также изменялись координаты. Опять-таки ничего обнаружить не удалось, но был дан самый жесткий предел на темп испарения черных дыр в наших окрестностях: менее десятка тысяч событий в год в объеме один кубический парсек.Второй путь связан не с поиском вспышек, а с попытками обнаружить суммарный вклад множества испаряющихся черных дыр. Во-первых, можно искать «лишнее» гамма-излучение. Например, от черных дыр в центральной части нашей Галактики или от соседних галактик. А во-вторых, можно искать частицы, рождающиеся на финальных стадиях испарения, причем не просто частицы, а античастицы.