Читаем Все формулы мира. Как математика объясняет законы природы полностью

Отметим, что при уже упоминавшейся массе 1026 г температура будет примерно равна современной температуре реликтового излучения, заполняющего всю вселенную (в прошлом температура была выше). Так что, даже если мы сейчас поместим черную дыру в совсем пустую область космоса, она все равно будет расти за счет поглощения фотонов реликта при массе больше 1026 г.

Итак, у нас есть температура, значит, в первом приближении мы можем посчитать светимость[112]. Для теплового излучения сферы радиуса R она рассчитывается по формуле



Напомним, что постоянная Стефана – Больцмана равна:



В качестве радиуса излучающей поверхности подставим шварцшильдовский радиус. Затем светимость запишем в таком виде:



т. е. мощность излучения определяется темпом потери массы. Тогда мы сможем записать:



Проведем интегрирование от начальной массы M до нуля (полное испарение) и для времени полного испарения получим:



Точная формула выглядит так:



Мы снова с точностью до численных коэффициентов получили верный результат!

Можно получить его и несколько иначе. Пусть энергия уносится квантами электромагнитного излучения (напомним, что на первых этапах испарения, пока температура недостаточно велика, частицы не рождаются – только излучение). Энергия одного кванта равна Характерное время испускания составляет Δt = λ/ c. Запишем вначале такое выражение (оно соответствует светимости L):



Значит:



Нам надо оценить время излучения всей массы черной дыры, т. е. время потери энергии E = Mc2. Обозначим это время, как и выше, буквой τ и вместе с Eγ подставим в уравнение E = Mc2. Это можно описать и иначе:



Получим:



Иначе говоря, снова тот же результат, верный с точностью до небольшого численного коэффициента.

Когда температура черной дыры становится достаточно высокой для того, чтобы рождались не только кванты электромагнитного излучения, но и частицы, коэффициент в формуле немного изменяется. Поэтому для совсем легких черных дыр формула работает лишь примерно: они испаряются несколько быстрее.

Что здесь для нас важно с точки зрения астрофизики? Испаряющиеся черные дыры являются уникальными источниками, проявления которых можно надеяться выявить. Здесь астрономы идут разными путями.

Во-первых, можно искать сами вспышки, связанные с последними моментами жизни черных дыр, причем как в гамма-диапазоне (ведь температура растет с падением массы, и на финальных стадиях испускается много гамма-излучения), так и в других, в первую очередь в радиодиапазоне. К сожалению, ничего пока не обнаружено. Заметим, что на финальных стадиях, несмотря на высокую температуру, светимость объекта невелика (намного меньше солнечной). Действительно, ведь от черной дыры почти ничего не осталось – за последнюю десятую долю секунды испаряются последние тонны вещества (а за последнюю минуту – несколько сотен тонн). Поэтому вспышки в гамма-диапазоне (где их легче искать) доступны с помощью современной аппаратуры лишь с расстояний порядка одного парсека и меньше.

Остроумный подход использовала коллаборация спутника Fermi[113]. Допустим, мы могли пропустить вспышку (или ни один из аппаратов не смотрел в нужную сторону, или вспышка была слаба, или еще что-то помешало, например солнечная активность). Но за годы до момента своего исчезновения достаточно близкая черная дыра является заметным гамма-источником, чьи светимость и спектр меняются по более или менее известному закону. А кроме того, поскольку объект достаточно близкий, можно заметить его смещение на небе. Соответственно, был проведен поиск источников, которые исчезли за несколько лет мониторинга всего неба в гамма-диапазоне обсерваторией «Ферми», и при этом определенным образом эволюционировали их светимости и спектральные параметры, а также изменялись координаты. Опять-таки ничего обнаружить не удалось, но был дан самый жесткий предел на темп испарения черных дыр в наших окрестностях: менее десятка тысяч событий в год в объеме один кубический парсек.

Второй путь связан не с поиском вспышек, а с попытками обнаружить суммарный вклад множества испаряющихся черных дыр. Во-первых, можно искать «лишнее» гамма-излучение. Например, от черных дыр в центральной части нашей Галактики или от соседних галактик. А во-вторых, можно искать частицы, рождающиеся на финальных стадиях испарения, причем не просто частицы, а античастицы.

Перейти на страницу:

Похожие книги

Биология добра и зла. Как наука объясняет наши поступки
Биология добра и зла. Как наука объясняет наши поступки

Как говорит знаменитый приматолог и нейробиолог Роберт Сапольски, если вы хотите понять поведение человека и природу хорошего или плохого поступка, вам придется разобраться буквально во всем – и в том, что происходило за секунду до него, и в том, что было миллионы лет назад. В книге автор поэтапно – можно сказать, в хронологическом разрезе – и очень подробно рассматривает огромное количество факторов, влияющих на наше поведение. Как работает наш мозг? За что отвечает миндалина, а за что нам стоит благодарить лобную кору? Что «ненавидит» островок? Почему у лондонских таксистов увеличен гиппокамп? Как связаны длины указательного и безымянного пальцев и количество внутриутробного тестостерона? Чем с точки зрения нейробиологии подростки отличаются от детей и взрослых? Бывают ли «чистые» альтруисты? В чем разница между прощением и примирением? Существует ли свобода воли? Как сложные социальные связи влияют на наше поведение и принятие решений? И это лишь малая часть вопросов, рассматриваемых в масштабной работе известного ученого.

Роберт Сапольски

Научная литература / Биология / Образование и наука
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература
Она смеётся, как мать. Могущество и причуды наследственности
Она смеётся, как мать. Могущество и причуды наследственности

Книга о наследственности и человеческом наследии в самом широком смысле. Речь идет не просто о последовательности нуклеотидов в ядерной ДНК. На то, что родители передают детям, влияет целое множество факторов: и митохондриальная ДНК, и изменяющие активность генов эпигенетические метки, и симбиотические микроорганизмы…И культура, и традиции, география и экономика, технологии и то, в каком состоянии мы оставим планету, наконец. По мере развития науки появляется все больше способов вмешиваться в разные формы наследственности, что открывает потрясающие возможности, но одновременно ставит новые проблемы.Технология CRISPR-Cas9, используемая для редактирования генома, генный драйв и создание яйцеклетки и сперматозоида из клеток кожи – список открытий растет с каждым днем, давая достаточно поводов для оптимизма… или беспокойства. В любом случае прежним мир уже не будет.Карл Циммер знаменит своим умением рассказывать понятно. В этой важнейшей книге, которая основана на самых последних исследованиях и научных прорывах, автор снова доказал свое звание одного из лучших научных журналистов в мире.

Карл Циммер

Научная литература
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы

Как появились университеты в России? Как соотносится их развитие на начальном этапе с общей историей европейских университетов? Книга дает ответы на поставленные вопросы, опираясь на новые архивные источники и концепции современной историографии. История отечественных университетов впервые включена автором в общеевропейский процесс распространения различных, стадиально сменяющих друг друга форм: от средневековой («доклассической») автономной корпорации профессоров и студентов до «классического» исследовательского университета как государственного учреждения. В книге прослежены конкретные контакты, в особенности, между российскими и немецкими университетами, а также общность лежавших в их основе теоретических моделей и связанной с ними государственной политики. Дискуссии, возникавшие тогда между общественными деятелями о применимости европейского опыта для реформирования университетской системы России, сохраняют свою актуальность до сегодняшнего дня.Для историков, преподавателей, студентов и широкого круга читателей, интересующихся историей университетов.

Андрей Юрьевич Андреев

История / Научная литература / Прочая научная литература / Образование и наука