Читаем Все формулы мира. Как математика объясняет законы природы полностью

Важно, что коллапсирует область размером порядка текущего горизонта[109]. Соответственно, в разное время формируются черные дыры разной массы: чем позже – тем больше[110]. Процесс идет от самых ранних моментов (когда теоретически в некоторых моделях масса может доходить до планковской – 10–5 г) до примерно одной секунды (тогда могут образовываться дыры с массой около 100 000 масс Солнца). Для массы черной дыры в зависимости от времени формирования существует простая формула, определяемая массой вещества внутри горизонта:



где c – скорость света, G – ньютоновская постоянная, а t – время.

Результат приведен в граммах, и время нормировано на момент формирования тех дыр, чья жизнь сейчас, согласно хокинговской модели, подходит к концу.

В своей знаменитой работе 1975 г. Стивен Хокинг предложил механизм, с помощью которого черная дыра может «испаряться»[111]. Детали механизма довольно нетривиальны с бытовой точки зрения, а упрощенные иллюстрации лишь вводят в заблуждение. Но, как бы то ни было, вблизи горизонта (что не означает микроскопических расстояний от него!) за счет квантовых эффектов формируются частицы (и кванты электромагнитного излучения, и частицы, имеющие массу покоя), уносящие энергию дыры, т. е. уменьшающие ее массу. Чем меньше черная дыра, тем активнее она излучает. Для внешнего наблюдателя черная дыра выглядит как источник теплового излучения.

Температура излучения черной дыры определяется следующей формулой:



где h – постоянная Планка, а k – постоянная Больцмана.

Видно, что с уменьшением массы температура растет. Давайте попробуем получить эту формулу с точностью до численного коэффициента.

Начнем мы, как ни странно, с принципа неопределенности Гейзенберга и корпускулярно-волнового дуализма. Легенда гласит, что в разговоре с Яковом Борисовичем Зельдовичем Владимир Наумович Грибов высказал следующую мысль. Возникает парадокс, если мы применим принцип Гейзенберга к черным дырам. С одной стороны, мы говорим, что из них ничего не вылетает, а с другой – как же мы локализуем в маленькой черной дыре частицу, длина волны которой превосходит размер черной дыры? Иными словами, в некотором смысле квантовая механика вступает в противоречие с ОТО. Грибов полагал, что «квантовая механика победит».

Предельный масштаб, на котором мы можем локализовать частицу, связан с ее комптоновской длиной волны:



где m – масса частицы.

Что же это за длина волны? Это можно пояснить таким образом (хотя в таком упрощенном комментарии есть элемент передергивания). Каждой длине волны соответствует частота, которую можно рассчитать, используя скорость распространения волны. В данном случае – скорость света: ν = c /λ. С одной стороны, если мы рассматриваем волну, то энергия частицы будет равна E = hν. С другой – энергия частицы при такой предельной локализации будет порядка ее энергии покоя: E = mc2. Таким образом, hν = hc /λ = mc2. А отсюда мы сразу получаем, что



Принцип неопределенности Гейзенберга записывается таким образом:



где Δx – неопределенность координаты, а Δp – неопределенность импульса частицы.

В нашем рассуждении существенно, что мы пытаемся локализовать частицу по координате с точностью порядка ее комптоновской длины волны. Это приведет к тому, что неопределенность импульса будет порядка Δp = mc (именно поэтому выше мы могли использовать скорость света при сопоставлении частоты и длины волны). Тогда для Δx получим:



Таким образом, эта величина равна комптоновской длине волны, деленной на 2π. Эту величину называют приведенной комптоновской длиной волны и записывают так: (а величину называют приведенной или редуцированной постоянной Планка).

Теперь получим оценку температуры черной дыры. С одной стороны, пределом для «вылезания» частицы из дыры будет равенство диаметра черной дыры и приведенной комптоновской длины волны (напомним, что мы всего лишь даем некую иллюстрацию, на самом деле никакие частицы из черной дыры не «вылупляются», они не пересекают горизонт «оттуда сюда», а возникают «с нашей стороны» из-за изменений параметров вакуума, связанных с нестационарностью горизонта). С другой стороны, при излучении у нас есть равенство для тепловой энергии частицы и энергии кванта:



где длина волны – это комптоновская длина.

Приведенную длину мы оценили как удвоенный радиус черной дыры, для которого используем стандартную формулу Шварцшильда:



Таким образом получаем:



Теперь соберем все вместе и получим выражение для температуры:



Формула лишь коэффициентом π отличается от точного значения. Разумеется, это совсем не строгий вывод, и, только зная аккуратно полученный правильный результат, можно потирать руки, радуясь тому, что мы таким простым способом получили столь фундаментальную формулу. Тем не менее приятно, что можно построить такую наглядную цепочку рассуждений.

Перейти на страницу:

Похожие книги

Биология добра и зла. Как наука объясняет наши поступки
Биология добра и зла. Как наука объясняет наши поступки

Как говорит знаменитый приматолог и нейробиолог Роберт Сапольски, если вы хотите понять поведение человека и природу хорошего или плохого поступка, вам придется разобраться буквально во всем – и в том, что происходило за секунду до него, и в том, что было миллионы лет назад. В книге автор поэтапно – можно сказать, в хронологическом разрезе – и очень подробно рассматривает огромное количество факторов, влияющих на наше поведение. Как работает наш мозг? За что отвечает миндалина, а за что нам стоит благодарить лобную кору? Что «ненавидит» островок? Почему у лондонских таксистов увеличен гиппокамп? Как связаны длины указательного и безымянного пальцев и количество внутриутробного тестостерона? Чем с точки зрения нейробиологии подростки отличаются от детей и взрослых? Бывают ли «чистые» альтруисты? В чем разница между прощением и примирением? Существует ли свобода воли? Как сложные социальные связи влияют на наше поведение и принятие решений? И это лишь малая часть вопросов, рассматриваемых в масштабной работе известного ученого.

Роберт Сапольски

Научная литература / Биология / Образование и наука
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература
Она смеётся, как мать. Могущество и причуды наследственности
Она смеётся, как мать. Могущество и причуды наследственности

Книга о наследственности и человеческом наследии в самом широком смысле. Речь идет не просто о последовательности нуклеотидов в ядерной ДНК. На то, что родители передают детям, влияет целое множество факторов: и митохондриальная ДНК, и изменяющие активность генов эпигенетические метки, и симбиотические микроорганизмы…И культура, и традиции, география и экономика, технологии и то, в каком состоянии мы оставим планету, наконец. По мере развития науки появляется все больше способов вмешиваться в разные формы наследственности, что открывает потрясающие возможности, но одновременно ставит новые проблемы.Технология CRISPR-Cas9, используемая для редактирования генома, генный драйв и создание яйцеклетки и сперматозоида из клеток кожи – список открытий растет с каждым днем, давая достаточно поводов для оптимизма… или беспокойства. В любом случае прежним мир уже не будет.Карл Циммер знаменит своим умением рассказывать понятно. В этой важнейшей книге, которая основана на самых последних исследованиях и научных прорывах, автор снова доказал свое звание одного из лучших научных журналистов в мире.

Карл Циммер

Научная литература
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы

Как появились университеты в России? Как соотносится их развитие на начальном этапе с общей историей европейских университетов? Книга дает ответы на поставленные вопросы, опираясь на новые архивные источники и концепции современной историографии. История отечественных университетов впервые включена автором в общеевропейский процесс распространения различных, стадиально сменяющих друг друга форм: от средневековой («доклассической») автономной корпорации профессоров и студентов до «классического» исследовательского университета как государственного учреждения. В книге прослежены конкретные контакты, в особенности, между российскими и немецкими университетами, а также общность лежавших в их основе теоретических моделей и связанной с ними государственной политики. Дискуссии, возникавшие тогда между общественными деятелями о применимости европейского опыта для реформирования университетской системы России, сохраняют свою актуальность до сегодняшнего дня.Для историков, преподавателей, студентов и широкого круга читателей, интересующихся историей университетов.

Андрей Юрьевич Андреев

История / Научная литература / Прочая научная литература / Образование и наука