Читаем Все формулы мира. Как математика объясняет законы природы полностью

Неплохой оценкой времени падения является отношение начального расстояния r к скорости свободного падения на этом расстоянии: v = (2GM / r)1 / 2. Иными словами, Такую оценку часто применяют, например, для определения времени падения захваченного из межзвездной среды вещества на нейтронную звезду. Разумеется, точная величина будет несколько меньше, но по порядку величины это очень хорошая простая оценка.

Для случая, когда расстояние, с которого начинается падение, намного больше размера центрального тела, можно получить более точную оценку, воспользовавшись третьим законом Кеплера. Представьте себе две орбиты, касающиеся в одной точке. Одна – круговая с радиусом r. Вторая – крайне эксцентричная, практически «иголочка». В первом случае большая полуось равна r, а во втором – r / 2. Падение соответствует половине орбитального периода второй орбиты. Для первой легко посчитать орбитальный период:



Период второй орбиты, в соответствии с третьим законом Кеплера, будет меньше в 23 / 2 раза. Таким образом, время падения составит:



Теперь рассмотрим роль сопротивления воздуха. Все знают, что при падении с большой высоты (скажем, если кто-то выпал из самолета) скорость возрастает лишь до некоторого предела. Поэтому, кстати, все равно, с какой высоты падать – один или десять километров, все равно в момент удара скорость будет та же самая. Очевидно также, что объект большой площади наберет меньшую скорость, поэтому прыгать лучше с парашютом. Получим простую количественную оценку[135].

Итак, с какого-то момента тело перестанет увеличивать скорость, т. е. его ускорение будет равно нулю. Значит, сила тяжести уравновешена силой сопротивления среды. Напомним, что сила – это изменение импульса за данное время. Сила сопротивления складывается из ударов множества молекул. Значит, нам надо посчитать, какой импульс передадут молекулы за время t телу с площадью S.

Наше тело движется со скоростью v в среде с плотностью частиц n (эта величина показывает, сколько частиц содержится в единице объема, ее можно рассчитать. Разделим плотность среды на массу одной частицы, т. е. в нашем случае это примерно плотность воздуха ρ, деленная на массу молекулы азота N2). Каждая молекула передает импульс, равный удвоенному произведению скорости тела на массу молекулы. Стало быть, нам надо узнать, сколько молекул сталкивается с телом за время t.

Сделать это легко. Надо лишь подсчитать объем, «заметаемый» телом при движении. Он равен произведению площади S на скорость и на время. Теперь этот объем умножаем на концентрацию молекул n. В итоге сила сопротивления равна:



где m0 – масса молекулы.

Эта сила уравновешена силой тяжести, равной mg, где m – масса падающего тела, а g – ускорение свободного падения. Равенство двух сил позволяет вывести простую формулу для соответствующей скорости:



Зависимости прозрачны. Чем массивнее тело, тем быстрее оно будет падать. Чем больше плотность среды, тем меньше скорость. Большая площадь также позволяет уменьшить скорость падения (забыли парашют – распахните пальто).

Можно подставить какие-нибудь характерные значения и дать оценку скорости. Округляя, мы получим, что тело массой около 100 кг и площадью 1 кв. м может набрать скорость порядка 100 км/ч. Такая скорость набирается при падении с высоты метров 40. У человека площадь меньше, поэтому, с одной стороны, можно разогнаться до пары сотен км/ч[136], а с другой – получить оценку, что парашют с площадью порядка 100 кв. м должен замедлять спуск до безопасных скоростей.

Приложение 9

Высота гор и форма астероидов

Уже более 300 лет назад астрономы могли убедиться, что наблюдаемые небесные тела (планеты и их спутники) имеют округлую форму. Однако очевидно, что камень (в том числе и летающий в космосе) может иметь довольно причудливую форму. Легко сообразить, в чем дело: гравитация придает крупным телам сферическую форму, «сглаживая» неровности, как мы, создавая давление руками, лепим круглые снежки.

Можно ли примерно оценить размер тела, при котором оно уже не сможет поддерживать заметно несферическую форму? Оказывается, сделать это легко. Надо всего лишь знать закон всемирного тяготения.

Догадаться о структуре закона, определяющего гравитацию, тоже можно. Во-первых, сообразить, что чем массивнее тела, тем больше гравитационное взаимодействие между ними. Во-вторых, из-за трехмерности однородного и изотропного пространства сила будет спадать как квадрат расстояния. Получаем известный из школьной физики закон:



Здесь в числителе стоят массы притягивающихся тел. Нас будет интересовать ситуация, когда M1 – масса планеты, M2 – масса заметной неоднородности на ней (по сути, речь идет о горе на поверхности). А стоящая в знаменателе величина R – радиус планеты.

Перейти на страницу:

Похожие книги

Биология добра и зла. Как наука объясняет наши поступки
Биология добра и зла. Как наука объясняет наши поступки

Как говорит знаменитый приматолог и нейробиолог Роберт Сапольски, если вы хотите понять поведение человека и природу хорошего или плохого поступка, вам придется разобраться буквально во всем – и в том, что происходило за секунду до него, и в том, что было миллионы лет назад. В книге автор поэтапно – можно сказать, в хронологическом разрезе – и очень подробно рассматривает огромное количество факторов, влияющих на наше поведение. Как работает наш мозг? За что отвечает миндалина, а за что нам стоит благодарить лобную кору? Что «ненавидит» островок? Почему у лондонских таксистов увеличен гиппокамп? Как связаны длины указательного и безымянного пальцев и количество внутриутробного тестостерона? Чем с точки зрения нейробиологии подростки отличаются от детей и взрослых? Бывают ли «чистые» альтруисты? В чем разница между прощением и примирением? Существует ли свобода воли? Как сложные социальные связи влияют на наше поведение и принятие решений? И это лишь малая часть вопросов, рассматриваемых в масштабной работе известного ученого.

Роберт Сапольски

Научная литература / Биология / Образование и наука
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература
Она смеётся, как мать. Могущество и причуды наследственности
Она смеётся, как мать. Могущество и причуды наследственности

Книга о наследственности и человеческом наследии в самом широком смысле. Речь идет не просто о последовательности нуклеотидов в ядерной ДНК. На то, что родители передают детям, влияет целое множество факторов: и митохондриальная ДНК, и изменяющие активность генов эпигенетические метки, и симбиотические микроорганизмы…И культура, и традиции, география и экономика, технологии и то, в каком состоянии мы оставим планету, наконец. По мере развития науки появляется все больше способов вмешиваться в разные формы наследственности, что открывает потрясающие возможности, но одновременно ставит новые проблемы.Технология CRISPR-Cas9, используемая для редактирования генома, генный драйв и создание яйцеклетки и сперматозоида из клеток кожи – список открытий растет с каждым днем, давая достаточно поводов для оптимизма… или беспокойства. В любом случае прежним мир уже не будет.Карл Циммер знаменит своим умением рассказывать понятно. В этой важнейшей книге, которая основана на самых последних исследованиях и научных прорывах, автор снова доказал свое звание одного из лучших научных журналистов в мире.

Карл Циммер

Научная литература
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы

Как появились университеты в России? Как соотносится их развитие на начальном этапе с общей историей европейских университетов? Книга дает ответы на поставленные вопросы, опираясь на новые архивные источники и концепции современной историографии. История отечественных университетов впервые включена автором в общеевропейский процесс распространения различных, стадиально сменяющих друг друга форм: от средневековой («доклассической») автономной корпорации профессоров и студентов до «классического» исследовательского университета как государственного учреждения. В книге прослежены конкретные контакты, в особенности, между российскими и немецкими университетами, а также общность лежавших в их основе теоретических моделей и связанной с ними государственной политики. Дискуссии, возникавшие тогда между общественными деятелями о применимости европейского опыта для реформирования университетской системы России, сохраняют свою актуальность до сегодняшнего дня.Для историков, преподавателей, студентов и широкого круга читателей, интересующихся историей университетов.

Андрей Юрьевич Андреев

История / Научная литература / Прочая научная литература / Образование и наука