Неплохой оценкой времени падения является отношение начального расстояния
Для случая, когда расстояние, с которого начинается падение, намного больше размера центрального тела, можно получить более точную оценку, воспользовавшись третьим законом Кеплера. Представьте себе две орбиты, касающиеся в одной точке. Одна – круговая с радиусом
Период второй орбиты, в соответствии с третьим законом Кеплера, будет меньше в 23 / 2
раза. Таким образом, время падения составит:Теперь рассмотрим роль сопротивления воздуха. Все знают, что при падении с большой высоты (скажем, если кто-то выпал из самолета) скорость возрастает лишь до некоторого предела. Поэтому, кстати, все равно, с какой высоты падать – один или десять километров, все равно в момент удара скорость будет та же самая. Очевидно также, что объект большой площади наберет меньшую скорость, поэтому прыгать лучше с парашютом. Получим простую количественную оценку[135]
.Итак, с какого-то момента тело перестанет увеличивать скорость, т. е. его ускорение будет равно нулю. Значит, сила тяжести уравновешена силой сопротивления среды. Напомним, что сила – это изменение импульса за данное время. Сила сопротивления складывается из ударов множества молекул. Значит, нам надо посчитать, какой импульс передадут молекулы за время
Наше тело движется со скоростью
Сделать это легко. Надо лишь подсчитать объем, «заметаемый» телом при движении. Он равен произведению площади
где
Эта сила уравновешена силой тяжести, равной
Зависимости прозрачны. Чем массивнее тело, тем быстрее оно будет падать. Чем больше плотность среды, тем меньше скорость. Большая площадь также позволяет уменьшить скорость падения (забыли парашют – распахните пальто).
Можно подставить какие-нибудь характерные значения и дать оценку скорости. Округляя, мы получим, что тело массой около 100 кг и площадью 1 кв. м может набрать скорость порядка 100 км/ч. Такая скорость набирается при падении с высоты метров 40. У человека площадь меньше, поэтому, с одной стороны, можно разогнаться до пары сотен км/ч[136]
, а с другой – получить оценку, что парашют с площадью порядка 100 кв. м должен замедлять спуск до безопасных скоростей.Приложение 9
Высота гор и форма астероидов
Уже более 300 лет назад астрономы могли убедиться, что наблюдаемые небесные тела (планеты и их спутники) имеют округлую форму. Однако очевидно, что камень (в том числе и летающий в космосе) может иметь довольно причудливую форму. Легко сообразить, в чем дело: гравитация придает крупным телам сферическую форму, «сглаживая» неровности, как мы, создавая давление руками, лепим круглые снежки.
Можно ли примерно оценить размер тела, при котором оно уже не сможет поддерживать заметно несферическую форму? Оказывается, сделать это легко. Надо всего лишь знать закон всемирного тяготения.
Догадаться о структуре закона, определяющего гравитацию, тоже можно. Во-первых, сообразить, что чем массивнее тела, тем больше гравитационное взаимодействие между ними. Во-вторых, из-за трехмерности однородного и изотропного пространства сила будет спадать как квадрат расстояния. Получаем известный из школьной физики закон:
Здесь в числителе стоят массы притягивающихся тел. Нас будет интересовать ситуация, когда