Современные расчеты неплохо воспроизводят многие особенности распределения планет по массам и расстояниям от своих звезд. Однако, с одной стороны, остаются проблемы в согласовании теоретических построений с наблюдениями, а с другой – пока не хватает данных с телескопов для достаточно полной картины. В ближайшие годы продолжающиеся наземные наблюдения изменения лучевых скоростей звезд позволят обнаруживать планеты на довольно больших расстояниях от звезд. Находящийся на орбите спутник TESS откроет тысячи новых экзопланет, в первую очередь с орбитальными периодами меньше нескольких месяцев. Спутник Gaia должен представить свои данные по экзопланетам на основе астрометрических методов. Темп открытий в этой области велик и постоянно растет, поэтому нужны и новые модели популяционного синтеза.
Уже сейчас они учитывают многие детали изменения параметров диска, постепенного роста планет и планетезималей[132]
, взаимодействий между ними, миграции планет и т. д. Постепенно становится понятным, в каких частях диска начинают образовываться планеты разных типов.Условия в разных частях диска отличаются друг от друга. Меняются температура и плотность, меняется состав. Все вместе это приводит и к изменению состояния вещества, от чего зависит процесс роста планет. Важным понятием является так называемая
Мы уже указали, что три важнейшие составляющие протопланетного диска – газ, пыль и лед. В газовой составляющей доминируют водород и гелий. Это два самых обильных элемента во вселенной в целом, в Галактике, в межзвездной среде, в звездах… В типичном протопланетном диске в начале его эволюции водород и гелий могут составлять до 98–99 % массы. Неудивительно, что самые крупные планеты (как Юпитер в Солнечной системе) состоят в основном из них.
Пыль бывает очень разная, в том числе ледяная, но о ней позже. Начнем с более привычной. В ней могут доминировать углерод, кремний, железо (также будет наличествовать кислород, поскольку в состав пыли могут входить оксиды). Это тугоплавкие частицы, поэтому они выживают даже вблизи звезды (на расстояниях более нескольких звездных радиусов). Элементы, начиная с углерода и дальше, а особенно кремний и железо, составляют незначительную часть массы диска. Но поскольку они способны образовывать пылинки, а те в свою очередь могут слипаться друг с другом и таким образом наращивать массу, то именно они играют ключевую роль в начале процесса формирования планет во внутренних частях диска. Даже Юпитер начинался когда-то с пыли.
Правда, вероятнее всего, с другой пыли. С ледяной. Вдали от звезды такие вещества, как вода, метан, аммиак, могут существовать не в виде газа, а в виде льда. Это крайне важно, потому что их составляющие (водород, углерод, азот) более обильны, чем кремний и железо. Иначе говоря, ледяной пыли больше, чем кремниевой и железной, причем в несколько раз. А именно от пыли зависят первые фазы роста планеты. Поэтому там, где есть ледяная пыль, планеты растут быстрее и вырастают сильнее. Там – это за снеговой линией.
Снеговая линия разделяет области, где данное вещество (вода, метан и т. д.) может или не может формировать пылинки. Граница будет разной для разных веществ, но они довольно близки друг к другу. Кроме того, среди льдов чаще всего доминирует вода (молекула воды – одна из самых распространенных), поэтому для примера можно обсудить только водяной лед.
А теперь дадим совсем несложную оценку (аналогичным способом можно оценить в простейшем случае положение внешней границы зоны обитаемости; для точного расчета границ зоны обитаемости надо учитывать влияние атмосферы планеты и некоторые другие эффекты). Посчитаем, на каком расстоянии от звезды температура освещаемого ею объекта будет равняться нулю по шкале Цельсия[133]
.Предположим, наш объект поглощает все падающее на него излучение (что не совсем точно). Представьте себе концентрические сферы распространения излучения вокруг звезды, начиная с ее радиуса. Разумеется, через каждую сферу проходит одинаковая энергия, т. е. мы можем себе представить, что поверхность звезды испустила какую-то энергию. Затем всю ее поглотила следующая сфера, после чего переизлучила ту же самую энергию дальше. При этом каждая сфера, начиная с поверхности, испускает тепловое излучение. Тогда для их светимости есть простая формула, которую мы уже использовали выше в других приложениях:
Напомним, что здесь
Чем дальше мы отдаляемся от звезды, тем ниже температура сферы, а значит, и каждого ее элемента. Следовательно, меньше будет и температура маленького поглощающего излучение объекта. Нам надо найти расстояние, на котором температура упадет до величины, соответствующей замерзанию воды[134]
.Обозначив температуру поверхности звезды