В водном (водосодержащем) растворе липиды будут спонтанно образовывать структуру одного из этих типов. Какую — зависит от того, с каким именно липидом мы имеем дело, а также от других свойств раствора, в особенности от того, является ли он кислотным (тяготеет к отдаче протонов и захвату электронов) или щелочным (наоборот).
К числу липидов относятся сравнительно простые жирные кислоты и чуть более сложные фосфолипиды. Жирные кислоты встречаются в биохимии повсюду. Это один из источников топлива, которое митохондрии могут использовать, например, для синтеза АТФ. Фосфолипид состоит из двух жирных кислот, объединённых фосфатной группой (соединением фосфора, углерода, кислорода, азота и водорода).
Клеточные мембраны у всех организмов, обитающих сегодня на Земле, состоят из фосфолипидных бислоёв. Эти молекулы очень легко самоорганизуются в бислои, но не в мицеллы, поскольку их двойные хвосты слишком толстые и с трудом укладываются в шарообразную конфигурацию мицеллы. Затем бислойные мембраны заворачиваются друг в друга, образуя сферические пузырьки, так называемые везикулы. Это простейший этап на пути к возникновению клетки.
* * *
В рамках вопроса о возникновении жизни с фосфолипидами связана одна проблема: они слишком хорошо справляются со своими задачами. Они практически непроницаемы — лишь вода и некоторые другие мелкие молекулы могут попасть с одной стороны мембраны на другую. Следовательно, представляется, что древнейшие клеточные мембраны, вероятно, состояли из жирных кислот, а не из фосфолипидов. Как только они образовались, эволюция стала их совершенствовать.
Жирные кислоты могут самопроизвольно образовывать бислои, но только при подходящих условиях. В очень щелочных растворах жирные кислоты легче образуют мицеллы; в сильно кислотных слипаются в большие маслянистые капли. Бислои лучше всего образуются в умеренно щелочных растворах. Это переходная фаза, зависящая от кислотности окружающей среды.
Такие бислои жирных кислот не расплетаются на длинные плоские поверхности, напоминающие листы бумаги. Наоборот, они быстро смыкаются и образуют маленькие сферы. В такой среде именно эта конфигурация обладает минимальной свободной энергией. Это ещё один пример того, как второй закон термодинамики позволяет создавать организованные структуры, нужные для жизни, а не размазывать всё в однородную слизь.
Жирные кислоты — относительно простые молекулы, поэтому мы, вероятно, без труда нашли бы их в подходящей среде на добиогенной Земле. Более того, образующиеся из них мембраны более проницаемы, чем те, что состоят из фосфолипидов. Для древней жизни это было хорошо. В зрелом организме нежелательно, чтобы вещества волей-неволей вытекали из клетки; в мембраны встроены очень специализированные структуры (например, АТФ-синтаза), обеспечивающие правильное поглощение и выведение питательных веществ и энергии. Но в самом начале, когда такие узкоспециальные механизмы ещё не успели развиться, требовался материал, который хорошо обеспечивал бы компартментализацию химических предшественников жизни, но не изолировал бы их от окружающей среды — иначе они буквально задохнулись бы. По-видимому, жирные кислоты отлично для этого подходят.
* * *
С точки зрения поэтического натуралиста, одно из наиболее интересных свойств спонтанной компартментализации заключается в том, что она хорошо подходит для эмерджентного описания системы. Без компартментов и мембран возник бы настоящий хаос из соединений, источников энергии и реакций. Как только между различными материалами образуется граница, можно говорить об «объекте» (в пределах границ) и среде (за пределами). Граница — имеем ли мы в виду конкретно клеточную мембрану либо кожу или экзоскелет многоклеточного организма — помогает структуре пользоваться окружающей свободной энергией, а нам позволяет обсуждать её удобным, вычислительно эффективным способом.
Британский нейрофизиолог Карл Фристон предположил, что функцию биологических мембран можно понимать в контексте
Вся эта с виду сложная конструкция воплощает простую идею: распространив марковское покрытие на часть сети, можно узнать всё необходимое о её вводе и выводе. Узлы могут обладать огромным числом внутренних состояний, но для работы сети имеют значение лишь те параметры, которые проступают через марковское покрытие.