Фристон считает, что клеточная мембрана сравнима с марковским покрытием. Внутри клетки протекает множество сложных процессов, и в окружающей внеклеточной среде также происходит множество явлений. Но коммуникация между внутренним и внешним пространством опосредуется через клеточную мембрану. В этих условиях система развивается в направлении такой конфигурации, при которой клеточная мембрана приобретает достаточную прочность: конфигурация сохраняется, даже если внутри клетки или вне её происходят пертурбации (не слишком серьёзные).
Данная теория изначально разрабатывалась не для отдельных клеток, а для описания того, как мозг контактирует с внешним миром. Наш мозг строит модель окружающей среды, чтобы новая информация не слишком часто нас озадачивала. Это и есть байесовское рассуждение: подсознательно мозг учитывает множество вещей, которые могли бы сейчас произойти, и уточняет вероятность каждого из возможных вариантов по мере поступления новой информации. Интересно, что тот же самый математический аппарат позволяет описывать системы на уровне отдельных клеток. Оказывается, что целостность и прочность клеточной мембраны можно сравнить с байесовским выводом. Вот как говорит об этом Фристон:
По-видимому, внутренние состояния (и их покрытие) активно участвуют в байесовском выводе. Иными словами, они, вероятно, моделируют окружающий мир и действуют соответствующим образом, так, чтобы сохранять функциональную и структурную целостность, что ведёт к гомеостазу [поддержание стабильных внутренних условий] и простому автопоэзу [сохранению структуры путём саморегуляции].
Это спекулятивный и новаторский набор идей, а не устоявшаяся парадигма, которая позволяла бы судить о функции клеток и мембран. Это существенное замечание, поскольку оно демонстрирует, как обсуждаемые здесь концепции — байесовский вывод, эмерджентность, второй закон термодинамики — объединяются и позволяют объяснить возникновение сложных структур в мире, подчиняющемся простым неуправляемым законам природы.
Глава 32
Происхождение и смысл жизни
Как-то раз я летел в переполненном самолёте на научную конференцию в город Бозмен, штат Монтана, и читал научные статьи, описывавшие связь между статистической физикой и происхождением жизни. Рядом со мной сидел попутчик, с любопытством заглядывавший в мои бумаги. «О, — сказал он, — мне хорошо известна эта работа».
Занимаясь физикой, часто встречаешься с людьми, у которых есть своя теория устройства Вселенной и которые жаждут с вами ею поделиться. Такие теории редко оказываются многообещающими. По-видимому, изучение жизни привлекает не меньше словоохотливых энтузиастов. Однако нам предстоял ещё долгий путь, и я спросил попутчика, что он думает на эту тему.
«Всё просто, — ответил он, наклонив голову, — смысл жизни — гидрогенизировать диоксид углерода».
Это был не тот ответ, которого я ожидал. Просто мне посчастливилось лететь рядом с Майклом Расселом, геохимиком из Лаборатории реактивного движения NASA, расположенной неподалёку от моего родного Калифорнийского технологического института. Встреча была не совсем случайной — мы оба летели на одну и ту же конференцию, где собирались выступать с докладами. Как выяснилось, Рассел — выдающийся (пусть и с некоторым оттенком ереси) современный специалист, изучающий происхождение жизни, причём его научный метод особенно близок к физике. Мы быстро поладили.
Рассел — один из лидеров фракции в дебатах о происхождении жизни, полагающей, что первым важнейшим шагом было возникновение метаболизма. Представители этого лагеря считают, что ключевое событие заключалось в появлении сложной сети химических реакций, потреблявших свободную энергию, имевшуюся в экосистеме молодой Земли, и эта энергия могла расходоваться на подпитку размножения, когда оно началось. Другая фракция полагает, что всё началось с размножения, — эта фракция сейчас пользуется наибольшим авторитетом в биологическом сообществе. Сторонники этой версии считают, что энергии на Земле было много и добыть её можно было без проблем, а важнейший прорыв в развитии жизни заключался в том, что однажды начался синтез молекулы, способной нести информацию (предположительно, это была РНК, рибонуклеиновая кислота); эта молекула могла самостоятельно копироваться и передавать содержавшийся в ней генетический код.
Мы не будем решать, кто прав в этом споре; существуют сложные вопросы, ответов на которые мы пока просто не знаем. Но эти вопросы не безнадёжны. На многих фронтах мы продвинулись к пониманию абиогенеза, как теоретически, так и экспериментально. В каком бы порядке ни возникли метаболизм и размножение, оба этих процесса необходимы, и особый научный интерес состоит в том, чтобы определить, как именно все компоненты сложились в итоговый рецепт.
* * *