Если мы хотим понять, как возникла жизнь, то было бы целесообразно поискать такие черты, которые характерны для всех существующих форм жизни. Одним из таких свойств, по-видимому, является протондвижущая сила, участвующая в хемиосмосе, — о ней шла речь в главе 30. Клеточные мембраны собирают энергию, получаемую от фотонов или от таких соединений, как сахар, и используют эту энергию для вытеснения электронов из клетки, оставляя внутри избыток протонов. От взаимного отталкивания фотонов генерируется сила, которая может использоваться для выполнения полезных задач, например для производства АТФ.
Откуда жизнь вообще почерпнула эту идею? Такой способ обращения с энергией в клетке не является наиболее очевидным. Когда Питер Митчелл и Дженнифер Мойл в 1960-е годы уточняли детали хемиоосмотического процесса, биологическое сообщество отнеслось к ним с крайним скептицизмом, пока не были получены бесспорные экспериментальные доказательства. Тот факт, что природа находит этот механизм столь полезным, возможно, подсказывает, что жизнь с самого зарождения взяла хемиосмос на вооружение.
Именно здесь в дело вступает гидрогенизация диоксида углерода. Замечание Рассела указывает на тот факт, что в смеси диоксида углерода (CO2
) и газообразного водорода (H2) содержится свободная энергия, а оба этих вещества в изобилии встречались в некоторых экосистемах молодой Земли. Если бы углерод мог каким-то образом избавиться от двух атомов кислорода и заменить их на водород, то в результате реакции образовались бы метан (CH4) и вода (H2O). В такой конфигурации заключено меньше свободной энергии; согласно второму закону термодинамики, такая трансформация «хочет» произойти.Всё это происходит не само собой. Всякий раз, когда вы зажигаете свечу или что угодно другое, вы высвобождаете свободную энергию, которая выделяется при соединении горючего с кислородом. Однако свеча не воспламеняется спонтанно — чтобы реакция началась, нужна искра.
В случае с диоксидом углерода требуется нечто более сложное, чем искра. Легко придумать такие цепочки реакций, которые постепенно отсекают атомы кислорода от углерода и заменяют их водородом. Проблема в том, что, хотя законченная последовательность такого рода приводит к высвобождению энергии, её первый этап требует
Ряд исследователей, в том числе Уильям Мартин и Ник Лэйн, а также Рассел, упорно исследуют сценарии, в которых могла бы сложиться нужная последовательность реакций, позволившая бы заграбастать окружающую свободную энергию. Они рассматривают ряд финтов, которые могли бы обеспечить такую возможность. Первый вариант —
Все эти компоненты сочетаются нужным образом в конкретной среде — глубоководных гидротермальных источниках. Точнее, речь идёт о
Ещё в 1988 году Рассел, исходя из своих представлений о возникновении жизни, прогнозировал, что нам предстоит открыть особую подводную геологическую формацию — тёплые (но не слишком горячие) щелочные подводные источники, находящиеся в очень пористых породах (испещрённых крошечными карманами, словно губка) и при этом относительно стабильные и долговечные. Его идея заключалась в том, что подобные карманы могли бы обеспечить компартментализацию задолго до возникновения каких-либо органических клеточных мембран и химическое неравновесие между щелочными соединениями в источниках и окружающей насыщенной протонами кислой океанической водой могло бы естественным образом породить протондвижущую силу, столь необходимую для биологических клеток.