Читаем Вселенная в зеркале заднего вида полностью

Загадка брахистохроны не теряла актуальности некоторое время, а потом, в 1696 году, Иоганн Бернулли — представитель очень знаменитой семьи, где было много выдающихся математиков — заявил, что решил задачу, и не без самодовольства поставил ее перед другими математиками: потягайтесь, мол, со мной.

Я, Иоганн Бернулли, обращаюсь к самым блестящим математикам в мире. Для умного человека нет ничего привлекательнее честной и трудной задачи, возможное решение которой стяжает им славу и останется в веках… Если кто-то сообщит мне решение представленной задачи, я публично объявлю, что он достоин похвалы[54].

Сам Бернулли придумал очень хитроумное решение задачи, так что похвалялся он, наверное, не зря. Вагонетка американских горок едет чем ближе к земле, тем быстрее — а Бернулли представил себе очень сложную линзу, материал которой чем выше, тем плотнее, так что свет, проходя сквозь нее сверху вниз, будет бежать чем ближе к земле, тем быстрее. Потом Бернулли применил принцип Ферма — и потребовал, чтобы луч прошел заданное расстояние за минимальное время.

Полученная кривая получила название перевернутой циклоиды и очень похожа на обычную миску, только очень точную, математически выведенную.

Все это стало возможным в основном благодаря тому, что лет за десять до этого Исаак Ньютон опубликовал свой трактат «Principia Mathematica». К тому времени, как Бернулли опубликовал свой вызов, Ньютон уже работал управляющим Королевского монетного двора, однако же нашел время подумать над задачей о брахистохроне. Решил он ее за один вечер перед сном — совсем иначе, чем Бернулли, геометрическим методом. Был он таким математическим врединой, что даже не стал подписываться. Но Бернулли все равно понял, кто это, отметив: «По когтю опознаю льва».

Находить форму кривых в XVII веке было очень модно. Другая знаменитая задача касалась поиска кривой с названием «таутохрона»[55]. Если сделать американские горки такой формы, то откуда бы вы ни пустили вагонетку, она доберется до низу за одно и то же время. Эту задачу решил в 1659 году Христиан Гюйгенс — тот самый, что описал свет как волну. Почему это такое большое достижение, становится понятно, если учесть, что до публикации «Principia Mathematica» оставалось еще почти 30 лет.


Циклоида


Я заговорил о таутохроне, поскольку выясняется, что она представляет собой точно такую же кривую, что и брахистохрона — циклоиду. Помимо того, что таутохрона — ответ на математическую задачу, она приносит много пользы, поскольку на тех же принципах можно построить и точные часы. На протяжении почти всей мировой истории единственными точными часами на свете было Солнце, а поскольку XVII век был периодом географических открытий и мореплавания, солнечные часы, конечно, уже не годились.

Обратите внимание, что в самом низу таутохрона очень похожа на кривую, которую описывает маятник. И не случайно. Маятники потому и позволяют часам так точно отмерять время, что при условии, что отклонение будет относительно малым, колебания занимают в точности одно и то же время — вот почему дуга маятника так хорошо вписывается в донышко циклоиды. Галилей еще в юности отметил этот факт экспериментально. Ему было скучно, он наблюдал за колебаниями люстры в соборе в Пизе и отметил, что размах колебаний уменьшается, однако время (в ударах сердца) остается постоянным.

Итак, перед нами интересный вопрос: судя по всему, движение частиц, волн и света определяется решениями одних и тех же задач на минимизацию. Найди путь, по которому луч света попадет из точки А в точку В за минимальное время — и надо же, найдешь ту линию, которую он опишет в реальной жизни!

Задачи о брахистохроне и таутохроне показывают, что точно так же можно рассуждать и о движении частиц, обладающих массой. Похоже, минимизация времени в пути — это нечто глубинное и важное.

Ньютон и Бернулли потому-то (отчасти) и были гениями, что сумели решить эти задачи, не располагая никаким общим руководством к решению. В сущности, им пришлось угадывать и перебирать возможные решения, пока они не пришли к идее самого короткого времени.

Все изменилось в XVIII веке, когда Леонард Эйлер и его ученик Жозеф Луи Лагранж обнаружили общее правило, которое позволило им минимизировать по траектории любую величину — хоть время, хоть расстояние.

Перейти на страницу:

Все книги серии Золотой фонд науки

φ – Число Бога
φ – Число Бога

Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вселенная! Курс выживания
Вселенная! Курс выживания

Эта книга – идеальный путеводитель по самым важным и, конечно, самым увлекательным вопросам современной физики: «Возможны ли путешествия во времени?», «Существуют ли параллельные вселенные?», «Если вселенная расширяется, то куда она расширяется?», «Что будет, если, разогнавшись до скорости света, посмотреть на себя в зеркало?», «Зачем нужны коллайдеры частиц, и почему они должны работать постоянно? Разве в них не повторяют без конца одни и те же эксперименты?» Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Я. Перельмана, С. Хокинга, Б. Брайсона и Б. Грина.Настоящий подарок для всех, кого интересует современная наука, – от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук.

Джефф Бломквист , Дэйв Голдберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От Дарвина до Эйнштейна
От Дарвина до Эйнштейна

Эта книга – блестящее подтверждение вечной истины «не ошибается только тот, кто ничего не делает»! Человеку свойственно ошибаться, а великие умы совершают подлинно великие ошибки. Американский астрофизик Марио Ливио решил исследовать заблуждения самых блистательных ученых в истории человечества и разобраться не только в сути этих ляпсусов, но и в том, какие психологические причины за ними стоят, а главное – в том, как они повлияли на дальнейший прогресс человечества. Дарвин, Кельвин, Эйнштейн, Полинг, Хойл – эти имена знакомы нам со школьной скамьи, однако мы и не подозревали, в какие тупики заводили этих гениев ошибочные предположения, спешка или упрямство и какие неожиданные выходы из этих тупиков находила сама жизнь… Читателя ждет увлекательный экскурс в историю и эволюцию науки, который не только расширит кругозор, но и поможет понять, что способность ошибаться – великий дар. Дар, без которого человек не может быть человеком.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги