Для каждого пути в пространстве-времени, соединяющего выбранные события, будем записывать время, проведенное в пути, т. е. время, которое покажут часы, которые сами путешествуют
. Среди всех возможных вариантов путей тот, который описывается геодезической, выделен особым свойством: отправленные по нему часы показывают максимальное время путешествия по сравнению со всеми другими часами, путешествующими между теми же событиями.Это выглядит противоположно нашим представлениям о «самом прямом». Геодезические на глобусе (и вообще там, где нет времени как отдельного «направления») – это пути минимальной
длины между двумя точками, они же и «самые прямые из возможных». Но перед нами еще один случай, когда отличие времени от пространства вносит свои поправки, и в пространстве-времени обстоятельства поворачиваются таким образом, что самые прямые линии, соединяющие два события, – это самые долгие путешествия для путешествующих. На космодроме, плавающем в космосе, как мы видели на прогулке 5, проходит больше времени, чем на борту: понятно, скажем мы теперь, ведь на космодроме двигателей нет, поэтому он следовал по геодезической (даже если по чьей-то неосмотрительности начал падение в сверхмассивную черную дыру), а ракета – определенно не по геодезической, раз включала двигатели. «Парадокс близнецов» (кто именно постареет сильнее) разрешается мгновенно: тот, кто на космодроме.
Рис. 6.31.
Расхождение геодезических измеряется как разность двух способов параллельного переноса касательного вектора. Слева: на геодезической выбрана точка, в которой проведен касательный вектор к геодезической. В точке, кроме того, указано направление к какой-то соседней геодезической. В центре: касательный вектор, перенесенный на вторую геодезическую, параллельно переносится вдоль этой геодезической. Справа: касательный вектор сначала подвергается параллельному переносу вдоль «своей» геодезической, а затем параллельно переносится на соседнюю. Разница между результатами в центре и справа и выражает расхождение геодезических
Свободное падение обеспечивает максимальное старение
Это свойство геодезических иногда называют «принципом максимального старения». Пространство-время говорит материи двигаться так, чтобы время на часах, путешествующих между событиями А и Б, было максимальным по сравнению с показаниями часов, добирающихся от А к Б любыми другими способами – при участии любых воздействий, кроме гравитации. Показания путешествующих часов часто называют собственным временем. Три с виду различные идеи выражают одно и то же: геодезические – свободное падение – максимальное собственное время.
Свойства параллельного переноса определяют кривизну
Кривизна: расхождение геодезических и забор. Кривизна – это «мера неодинаковости» близких геодезических, измеряемая их относительным ускорением. Определение кривизны опирается на правила параллельного переноса, и точный ответ на вопрос «кривизна чего
?» звучит как «кривизна заданных правил параллельного переноса». Чтобы выразить количественно, в каком темпе расходятся две соседние геодезические (рис. 6.31), мы выбираем место (точку) на одной из них, соединяем эту точку стрелкой с другой геодезической и в той же выбранной точке проводим касательный вектор к первой геодезической. Относительное ускорение геодезических выражается как разность результатов параллельного переноса, выполняемого двумя способами, которые различаются порядком действий. В первом варианте сначала параллельно переносим касательный вектор вдоль стрелки на вторую геодезическую, а затем то, что получится, переносим параллельно вдоль второй геодезической. (Стрелку мы при этом проводим так, чтобы после переноса вдоль нее получился касательный вектор ко второй геодезической; это всегда можно сделать.) Во втором варианте сначала касательный вектор переносится параллельно вдоль первой геодезической, а уже затем получившийся вектор параллельно переносится на вторую. Разница между двумя результатами – относительное ускорение – и выражает схождение/расхождение геодезических. Эта математическая процедура выполняется для «очень близких» геодезических.
Рис. 6.32.
Площадка, определяемая небольшими смещениями вдоль двух координатных линий. Показаны два различных пути, соединяющие начальную точку с противолежащей на координатной сетке