Двадцать оттенков кривизны. Может так случиться – и случается, – что Агент лишь имитирует непифагоровость/неевклидовость за счет путаного определения «направлений» в пространстве или пространстве-времени. Даже плоскость можно разграфить не в прямоугольную клетку, а косо, как на рис. 7.3 в центре, где квадрат расстояния вычисляется исходя из длин двух отрезков вдоль координатных осей не по Пифагору, а как c
2 = a2 + b2 – 0,96ab (т. е. число д из абвгдежзик-таблицы в данном случае равно –0,48). А если буквы абвгдежзик меняются от точки к точке, то картина выглядит не просто скошенно, а буквально криво, как на рис. 7.3 справа, и рецепт вычисления расстояний становится особенно сложным. Спрашивается, в каких случаях все-таки можно выпрямить сетку координатных линий, чтобы вернуть расстоянию его пифагоров вид? Это получится не для всех поверхностей, изображенных на рис. 7.4; а вообще можно ли, разглядывая абвгдежзик-таблицы, узнать, к какой из этих поверхностей они относятся? На рис. 7.4 по необходимости изображены двумерные поверхности, а в четырехмерии возможностей «скривиться» неизмеримо больше, и разобраться в них наивными средствами совсем не просто. Пытаться в лоб найти простое описание вместо сложного – не всегда хороший план: что, спрашивается, мы должны будем заключить, если после двух недель поисков мы так ничего и не найдем? Желаемое выпрямление существует, но сложно устроено или его вовсе нет? По счастью, имеется метод прямой обработки данных из абвгдежзик-таблиц, позволяющий сразу увидеть, есть ли неустранимая причина, по которой квадраты расстояний вычисляются не по Пифагору, или же все усложнения только кажущиеся из-за искусственного выбора скособоченной сетки. Этот метод состоит просто-напросто в построении кривизны. Отлично работает и в пространстве, и в пространстве-времени.
Рис. 7.4.
Искривленные и неискривленные поверхности (слева направо и сверху вниз): гиперболоид, цилиндр, тор, сфера. Цилиндр не имеет кривизны; тор выглядит искривленным при изображении в трехмерном пространстве, но математически, «сам по себе», он также имеет нулевую кривизну. Сфера и гиперболоид – искривленные поверхности. Цилиндр и гиперболоид – «открытые» (незамкнутые) поверхности, а сфера и тор – замкнутые
Кривизна дает критерий, чтобы решить, плоское пространство-время или нет. Если кривизна не равна нулю, то, значит, нельзя выбрать «прямую» координатную сетку и буквы абвгдежзик
везде сделать нулями и (минус) единицами, как в плоском пространстве-времени. А если равна нулю, то можно, как бы Агент ни пытался нас запутать. Вычисление кривизны – вполне «машинная» обработка абвгдежзик-таблиц, которую и в самом деле можно поручить компьютеру, обученному символьным вычислениям. Сначала по имеющейся метрике строятся правила параллельного переноса, а из них, как мы видели на прогулке 6, определяется кривизна. В итоге получается математическое выражение для кривизны в зависимости от букв абвгдежзик, но не просто от их значений в данной точке пространства-времени, а еще и от того, как быстро эти значения меняются при переходе к соседним точкам[134], и от того, как быстро меняются сами эти темпы изменения. Это слегка пугающее изобилие, и оно организуется в таблицу формата 4 × 4 × 4 × 4, с которой мы уже встречались в главе «прогулка 6». Однако независимых данных в ней существенно меньше, чем 4 · 4 · 4 · 4 = 256, потому что таблица кривизны, построенная из метрики, – это еще и «калейдоскоп».
Рис. 7.5.
Кривизна – таблица 4 × 4, составленная из таблиц 4 × 4. Двадцать компонент кривизны обозначены заглавными буквами русского алфавита; они распределяются по 144 ячейкам, не содержащим заведомых нулей. Каждая из этих букв – сложное выражение из букв абвгдежзик