Читаем Введение в электронику полностью

Ток течет только по первичной обмотке, так как трансформатор подсоединен к источнику тока. Величина тока в первичной обмотке зависит от числа витков в ней. Первичная обмотка действует подобно катушке индуктивности. Небольшой ток, который течет по ней, называется током намагничивания (или током холостого хода). Ток намагничивания компенсирует активное сопротивление первичной обмотки переменному току и поддерживает магнитное поле сердечника. Так как первичная обмотка имеет индуктивное реактивное сопротивление, ток намагничивания отстает по фазе от приложенного напряжения. Эти условия меняются при подключении нагрузки ко вторичной обмотке.

Когда ко вторичной обмотке подсоединяется нагрузка (рис. 18-4), в ней индуцируется ток. Обычно на трансформаторах вторичная обмотка намотана поверх первичной.

Рис. 18-4.Трансформатор с нагрузкой во вторичной обмотке.

Магнитное поле, созданное первичной обмоткой, пересекает витки вторичной обмотки. Ток во вторичной обмотке создает свое магнитное поле. Магнитное поле вторичной обмотки пересекает витки первичной обмотки, индуцируя в ней напряжение, направленное противоположно приложенному. Это магнитное поле помогает увеличению тока в первичной обмотке с помощью эффекта, называемого взаимоиндукцией. Первичная обмотка индуцирует напряжение во вторичной обмотке, а вторичная обмотка индуцирует направленное противоположно напряжение в первичной.

18-2. Вопросы

1. Как нагрузка влияет на работу трансформатора?

2. Дайте определение взаимоиндукции.

3. Опишите, как трансформатор индуцирует напряжение во вторичной обмотке.

18-3. КОЭФФИЦИЕНТ ТРАНСФОРМАЦИИ

Коэффициент трансформации определяет, является ли трансформатор повышающим, понижающим или пропускает напряжение неизменным. Коэффициент трансформации — это отношение числа витков вторичной обмотки к числу витков первичной обмотки:

Коэффициент трансформации = NS/NP

где NS — число витков во вторичной обмотке, a Np — в первичной.

Трансформатор, у которого напряжение во вторичной обмотке больше, чем в первичной, называется повышающим трансформатором. Степень повышения напряжения зависит от коэффициента трансформации. Отношение напряжения вторичной обмотки к напряжению первичной обмотки равно отношению чисел витков этих обмоток:

ES/EP = NS/NP

Следовательно, коэффициент трансформации повышающего трансформатора всегда больше единицы.

ПРИМЕР: Трансформатор имеет 400 витков первичной обмотки и 1200 витков вторичной. Если к первичной обмотке приложить переменное напряжение 120 вольт, то какое напряжение индуцируется во вторичной?

Дано:

Ер = 120 Вольт; Ns = 1200 витков; Np = 400 витков.

Еs =? 

Решение:

Es/EP = Ns/Np

Es/120 = 1200/400

Es = 360 В

Трансформатор, у которого напряжение во вторичной обмотке меньше, чем в первичной, называется понижающим трансформатором. Степень понижения напряжения определяется коэффициентом трансформации. Коэффициент трансформации понижающего трансформатора всегда меньше единицы.

ПРИМЕР: Трансформатор имеет 500 витков первичной обмотки и 100 витков вторичной. Если к первичной обмотке приложить переменное напряжение 120 вольт, то какое напряжение индуцируется во вторичной?

Дано:

Ер = 120 Вольт; Ns = 100 витков; Np = 500 витков.

Еs =? 

Решение:

Es/EP = Ns/Np

Es/120 = 100/500

Es = 24 В

Если предположить, что трансформатор не имеет потерь, то мощность во вторичной обмотке должна равняться мощности в первичной. Хотя трансформатор может повышать напряжение, он не может увеличивать мощность. Мощность, снимаемая со вторичной обмотки никогда не может быть больше мощности, потребляемой первичной обмоткой. Следовательно, когда трансформатор повышает напряжение, он понижает ток, и выходная мощность остается равной входной. Это может быть выражено следующим образом:

PP = PS

(IP)(EP) = (IS)(ES).

Следовательно, ток обратно пропорционален коэффициенту трансформации:

IP/IS = NS/NP

Перейти на страницу:

Все книги серии Учебники и учебные пособия

Введение в электронику
Введение в электронику

Книга известного американского специалиста в простой и доступной форме знакомит с основами современной электроники. Основная ее цель — теоретически подготовить будущих специалистов — электриков и электронщиков — к практической работе, поэтому кроме детального изложения принципов работы измерительных и полупроводниковых приборов, интегральных микросхем рассмотрены общие вопросы физики диэлектриков и полупроводников. Обсуждение общих принципов микроэлектроники, описание алгоритмов цифровой обработки информации сопровождается примерами практической реализации устройств цифровой обработки сигналов, описаны принципы действия и устройство компьютера. Книга снабжена большим количеством примеров, задач и упражнений, выполнение которых помогает пониманию и усвоению материала. Предназначена для учащихся старших курсов средних специальных учебных заведений радиотехнического профиля, а также будет полезна самостоятельно изучающим основы электроники.

Эрл Д. Гейтс

Радиоэлектроника

Похожие книги

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника