Читаем Введение в логику и научный метод полностью

Условие равновероятности событий имеет фундаментальную важность, но дать ему определение крайне сложно. Данное условие становилось источником серьезных ошибок, некоторые из которых мы рассмотрим ниже. В общем смысле, речь идет о том, что одно возможное событие должно происходить так же часто, как и другое. При этом нередко считается, что два события являются равновероятными, если мы не знаем причины, почему должно произойти одно из них, а не другое. Тем не менее, какими бы ни были сложности в установлении равновероятности набора возможных событий, поиск критериев равновероятности не входит в задачу математика, поскольку математик имеет дело с необходимыми следствиями такого допущения, безотносительно того, истинно оно или нет. Важность этого условия станет ясной, если мы зададимся вопросом о вероятности выпадения шестерки на игральной кости. Мы можем рассуждать следующим образом: существует две возможности: выпадение шестерки и выпадение чего-то другого; одна из возможностей является благоприятной, следовательно, вероятность равна ½. Однако данный ответ может оказаться ложным, если мы не сделаем допущения о том, что данные две альтернативы являются равно возможными. Это материальное допущение, как правило, не делается, поскольку считается, что возможность выпадения чего-то другого, кроме шестерки, состоит из пяти дополнительных альтернатив (выпадение единицы, двойки и т. д.), каждая из которых является равновероятной с выпадением шестерки. Следовательно, если все шесть сторон считаются равновероятными, то вероятность выпадения шестерки равна ⅙.

Основная задача исчисления вероятности заключается в определении вероятности комплексного события на основании знания о вероятности составляющих этот комплекс событий. Два события считаются независимыми, если наличие или отсутствие одного не оказывает никакого влияния на наличие другого. Утверждение о том, что два события на самом деле независимы, является материальным допущением, которое следует формулировать в явной форме. Много серьезных ошибок происходит из применения исчисления вероятности в тех случаях, когда независимость событий предполагается без достаточных на то оснований или когда данное условие вообще игнорируется.

Вероятность совместного появления событий

Какова вероятность того, что орел выпадет два раза, если бросить монету тоже два раза? Это событие является сложным, а его компоненты – это орел при первом броске и орел при втором. Если данные события независимы, и если вероятность выпадения орла в каждом случае равна равна ½ то, согласно исчислению вероятности, вероятность совместного появления событий (выпадения орла при двух бросках) является произведением вероятности выпадения орла при каждом из бросков, т. е. ½× ½ или ¼ Мы сможем увидеть, почему данный результат является необходимым следствием сделанных допущений, если пронумеруем все события, являющиеся возможными при двух бросках монеты. Так, мы получаем: ОО, ОР, РО, РР , где порядок букв в каждой из групп обозначает одну возможную последовательность выпадения орла и решки. Таким образом, получается, что при сделанных допущениях имеется 4 равновероятные возможности и только одна, ОО , является благоприятной. Следовательно, согласно полученному результату, вероятность выпадения двух орлов равна ¼. Вообще, если а и Ь являются двумя независимыми событиями, то Р ( а ) – вероятность первого события, Р ( b ) – вероятность второго, а вероятность их совместного наличия – Р ( ab ) = Р ( а ) × Р ( b ).

При вычислении вероятности сложных событий необходимо проявлять внимание к тому, чтобы перечислить все возможные альтернативы. Если нам нужно установить вероятность выпадения по меньшей мере 1 орла при двух бросках монеты, то перечисление альтернатив дает 3 благоприятных события. Следовательно, вероятность получения по меньшей мере 1 орла равна ¾ Видные ученые допускали ошибки вследствие того, что не учитывали все возможные альтернативы. Например, согласно Д′Аламберу, вероятность выпадения по меньшей мере одного орла равна ⅔ О н перечислил возможные события как О, ОР, РР , утверждая, что если орел выпадет с первого раза, то нет необходимости продолжать броски, с тем чтобы получить, по крайней мере, одного орла. Однако данный анализ ошибочен, поскольку перечисленные им возможные события не являются равновероятными: первая альтернатива заключает в себе возможность двух различных событий, являющихся равновероятными с остальными.

Перейти на страницу:

Похожие книги

MMIX - Год Быка
MMIX - Год Быка

Новое историко-психологическое и литературно-философское исследование символики главной книги Михаила Афанасьевича Булгакова позволило выявить, как минимум, пять сквозных слоев скрытого подтекста, не считая оригинальной историософской модели и девяти ключей-методов, зашифрованных Автором в Романе «Мастер и Маргарита».Выявленная взаимосвязь образов, сюжета, символики и идей Романа с книгами Нового Завета и историей рождения христианства настолько глубоки и масштабны, что речь фактически идёт о новом открытии Романа не только для литературоведения, но и для современной философии.Впервые исследование было опубликовано как электронная рукопись в блоге, «живом журнале»: http://oohoo.livejournal.com/, что определило особенности стиля книги.(с) Р.Романов, 2008-2009

Роман Романов , Роман Романович Романов

История / Литературоведение / Политика / Философия / Прочая научная литература / Психология
Философия
Философия

Доступно и четко излагаются основные положения системы философского знания, раскрываются мировоззренческое, теоретическое и методологическое значение философии, основные исторические этапы и направления ее развития от античности до наших дней. Отдельные разделы посвящены основам философского понимания мира, социальной философии (предмет, история и анализ основных вопросов общественного развития), а также философской антропологии. По сравнению с первым изданием (М.: Юристъ. 1997) включена глава, раскрывающая реакцию так называемого нового идеализма на классическую немецкую философию и позитивизм, расширены главы, в которых излагаются актуальные проблемы современной философской мысли, философские вопросы информатики, а также современные проблемы философской антропологии.Адресован студентам и аспирантам вузов и научных учреждений.2-е издание, исправленное и дополненное.

Владимир Николаевич Лавриненко

Философия / Образование и наука