Читаем Введение в логику и научный метод полностью

Какова вероятность выпадения 3 орлов при 5 бросках монеты при допущении, что орлы и решки равновероятны и что все броски являются независимыми? При решении данной задачи мы познакомимся еще с одной важной формулой исчисления вероятности. Возможно, мы начали бы рассуждать так: поскольку подбрасываются 5 монет, то вероятность выпадения орла на каждой из них равна ½ а искомая вероятность ½× ½× ½ или ⅟₈ Однако нам нужно выпадение трех орлов, и, следовательно, две другие монеты должны выпасть решкой, вероятность чего равна ½× ½ или ¼ из этого мы можем заключить, что вероятность выпадения лишь 3 орлов (т. е. 3 орлов и 2 решек) равна ⅛× ¼ или 1/32 Однако данный ответ будет неверным. В его неправильности можно будет легко убедиться, если выписать все возможные способы, которыми могли бы выпасть 5 монет, а затем непосредственно применить определение вероятности к этим равновероятным альтернативам.

Возможные альтернативы таковы:

Имеется 32 равновероятные возможности, из которых 10 являются благоприятными. Вероятность выпадения 3 орлов и 2 решек равна 10/32, что в десять раз больше, чем результат, полученный неверным методом.

Теперь мы можем понять, почему изначально предложенный метод был неверным. В нем не учитывались различные варианты упорядочивания, по которым могли выпасть 3 орла и 2 решки. Следовательно, нам требуется способ оценки числа различных вариантов упорядочивания, которые можно изобразить с помощью 5 буквенных знаков, 3 из которых будут представлять одну букву, а 2 – другую. Читателям, знакомым с законами комбинаторики, будет несложно осуществить подобную оценку. Тем же, кто не знаком с этой областью арифметики, не следует отчаиваться, поскольку существует очень простая формула, позволяющая легко получать нужный результат. Число возможных событий для каждой категории сложного события (т. е. 1 для 5 орлов и 0 решек, 5 для 4 орлов и 1 решки и т. д.) является ничем иным, как соответствующим коэффициентом в разложении двучлена

(а + Ь)5 = а5 + 5 а4Ь + 10 а3Ь2 + 10 а2Ъ3 + 5 аЬ4 + Ь5.

Таким образом, можно строго доказать, что если р является вероятностью события, a q является вероятностью его единственной взаимоисключающей альтернативы, то вероятность комплексного события, количество компонентов которого равно п, получается посредством выбора соответствующего термина при разложении двучлена (р + q)n . Разложение данного двучлена может быть осуществлено довольно просто:

Перейти на страницу:

Похожие книги

MMIX - Год Быка
MMIX - Год Быка

Новое историко-психологическое и литературно-философское исследование символики главной книги Михаила Афанасьевича Булгакова позволило выявить, как минимум, пять сквозных слоев скрытого подтекста, не считая оригинальной историософской модели и девяти ключей-методов, зашифрованных Автором в Романе «Мастер и Маргарита».Выявленная взаимосвязь образов, сюжета, символики и идей Романа с книгами Нового Завета и историей рождения христианства настолько глубоки и масштабны, что речь фактически идёт о новом открытии Романа не только для литературоведения, но и для современной философии.Впервые исследование было опубликовано как электронная рукопись в блоге, «живом журнале»: http://oohoo.livejournal.com/, что определило особенности стиля книги.(с) Р.Романов, 2008-2009

Роман Романов , Роман Романович Романов

История / Литературоведение / Политика / Философия / Прочая научная литература / Психология
Философия
Философия

Доступно и четко излагаются основные положения системы философского знания, раскрываются мировоззренческое, теоретическое и методологическое значение философии, основные исторические этапы и направления ее развития от античности до наших дней. Отдельные разделы посвящены основам философского понимания мира, социальной философии (предмет, история и анализ основных вопросов общественного развития), а также философской антропологии. По сравнению с первым изданием (М.: Юристъ. 1997) включена глава, раскрывающая реакцию так называемого нового идеализма на классическую немецкую философию и позитивизм, расширены главы, в которых излагаются актуальные проблемы современной философской мысли, философские вопросы информатики, а также современные проблемы философской антропологии.Адресован студентам и аспирантам вузов и научных учреждений.2-е издание, исправленное и дополненное.

Владимир Николаевич Лавриненко

Философия / Образование и наука