Для концентрации
внимания на
физическом
смысле подобных
функций комплексного
переменного
затронем проблему,
впервые поднятую
Платоном. Он
настаивал на
том, что в широком
смысле образ
видимого мира
отличается
от действительного
мира так же,
как искаженные
тени, отбрасываемые
костром на
стену темной
пещеры, отличаются
от внешнего
вида вещей,
которым они
принадлежат.
Апостол Павел
говорил, что
мы видим как
бы сквозь тусклое
зеркало. Элементарное
доказательство
этого суждения
дается синтетической
геометрией,
которая была
известна Платону.
Повторное
открытие Николой
Кузанским
основного
принципа
синтетической
геометрии
принципа равных
периметров
привело, особенно
в работах Гаусса
и Римана, к решению
проблемы,
поставленной
еще Платоном.
Случай пяти
тел Платона
свидетельствует
о принципиальных
ограничениях
видимого (т.е.
эвклидового)
пространства.
Имеются такие
формы, которые
существуют
как образы в
видимом пространстве,
но, несмотря
на это, не могут
быть получены
из кругового
действия. Все
эти формы включают
в себя некоторые
функции комплексной
переменной
(т.е. трансцендентные
функции), получаемые
из элементарной
самоподобной
конической
спирали. Более
того, круговое
действие и его
производные,
полученные
путем синтетико-геометрического
построения,
также определяются
как проекции
при помощи
функций таких
построений,
предпосылкой
для которых
являются самоподобные
конические
функции. Это
отражает тот
факт, что образы
видимого
пространства,
которые не
могут быть в
полной мере
объяснены в
границах
геометрических
характеристик
видимого
пространства,
полностью
объясняются
как спроектированные
образы пространства
более высокого
порядка
пространства
самоподобных
коническо-спиральных
действий.
Как и Риман
[6],
мы рассматриваем
видимое пространство
как дискретное
множество,
а высшее пространство
самоподобных
коническо-спиральных
построений
как непрерывное
множество.
Необходимо,
чтобы математика
для физических
явлений была
построена
полностью на
непрерывном
множестве, а
функции дискретного
множества
математически
описывались
как проекции
образов непрерывного
множества на
видимое (дискретное)
множество. С
этой целью мы
считаем необходимым
применять
самоподобные
коническо-спиральные
действия для
разработки
синтетической
геометрии
пространства
непрерывного
множества так
же, как и круговое
действие применяется
для построения
синтетической
геометрии
видимого пространства
(дискретного
множества). Вся
математическая
физика должна
быть выведена
и математически
доказана
исключительно
с помощью
синтетико-геометрического
метода построений
в области
непрерывного
множества, а
алгебраические
функции должны
восприниматься
не иначе как
описание
синтетико-геометрических
функций непрерывного
множества.
Для нас, как
и для Римана
[7],
экспериментальная
физика покоится
на таких уникальных
экспериментах,
которые доказывают
математические
(геометрические)
гипотезы, относящиеся
к непрерывному
множеству при
помощи экспериментальных
наблюдений,
проведенных
в области
спроектированных
образов дискретного
множества. Эта
возможность
существует
благодаря
геометрическому
принципу топологии
инвариантности.
На следующем
этапе инвариантность
определяет
те характеристики
геометрии
непрерывного
множества,
которые сохраняются
в процессе
проектирования
в качестве
характеристик
образов дискретного
множества. Во
втором приближении
инвариантности
более высоких
порядков определяют
те изменения
в непрерывном
множестве,
которые переносятся
на дискретное
множество как
изменения
инвариантов
дискретного
множества.
Релятивистские
изменения
измеряемых
геометрических
свойств процессов
в дискретном
множестве
относятся к
этому, более
высокому, классу
проективных
инвариантностей.
Уникальный
эксперимент
в своей сути
состоит из
преобразований
высшего порядка
в измеряемых
характеристиках
процессов
внутри дискретного
множества.
Работа Римана
1859 г., посвященная
образованию
ударных волн,
является моделью
основных черт
уникального
эксперимента.
Принцип уникального
эксперимента
это ключ к
секрету того
«любопытного
феномена»,
который мы в
общих чертах
обсудили ранее.
В позиции
Гаусса, Римана
и др. есть несколько
принципиальных
моментов, которые
многим читателям
этой книги
могут показаться
слишком сложными
для понимания,
но на которые
мы должны по
крайней мере
указать. Эти
моменты имеют
большое значение
для последующих
разделов этой
книги.