Чему равна вероятность случайного возникновения жизни? Как произошла жизнь на нашей планете? И что вообще такое жизнь? Доминирующей в современной науке является абиогенетическая гипотеза, согласно которой жизнь возникла самопроизвольно из неживой материи миллиарды лет назад. Последующая эволюция стала причиной возникновения всех известных видов растений и животных, а также человека. Согласно этому подходу эволюции биологической предшествовала эволюция химическая, то есть процесс, в результате которого из неорганических молекул образовались органические, которые в свою очередь взаимодействовали друг с другом, пока не образовались биополимеры — белки и нуклеиновые кислоты.
В 1924 г. советский биохимик Александр Иванович Опарин выступил с предположением, что химическая эволюция с последующим зарождением жизни могла протекать в первобытном океане — «бульоне», который вкупе с первобытной атмосферой содержал воду, аммиак, метан и водород.
В 1953 г. сотрудник Чикагского университета Стэнли Миллер опубликовал результаты своих экспериментов, в которых он попытался сварить такой «первобытный бульон», воспроизведя в лаборатории условия, которые должны были сопутствовать возникновению жизни. Ученый подверг воздействию электрических разрядов смесь из метана, воды, водорода и аммиака. Действительно, в этих и подобных им экспериментах удалось получить аминокислоты и азотистые основания. Напомним, что первые (аминокислоты) являются молекулярными кирпичиками, из которых построены белки, а вторые (азотистые основания) наряду с сахарами рибозой и дезоксирибозой и остатком фосфорной кислоты входят в состав нуклеиновых кислот.
Однако, детальный анализ продуктов спонтанного синтеза, протекающего в лабораторном «первобытном бульоне», вызвал немало вопросов.
Во-первых, в ходе этих экспериментов образовывались в равном количестве L- и D-изомеры аминокислот (эти формы являются зеркальным отображением друг друга). Но белки живых организмов состоят только из L-аминокислот. Возникает закономерный вопрос: каким образом возникли белки, состоящие исключительно из L-аминокислот? На него до сих пор так и не был получен удовлетворительный ответ. Во-вторых, факты говорят о том, что концентрации аминокислот в «первобытном бульоне» должны были бы быть слишком маленькими.
Химик Дональд Халл подсчитал, что концентрация самой простой аминокислоты, встречающейся в живых организмах глицина, не должна была быть больше 10 12 моля. Он пишет: «Даже максимально вероятное содержание аминокислоты является безнадежно низким, чтобы служить отправной точкой для самопроизвольного зарождения жизни».
Такие низкие концентрации ставят под сомнение идею самопроизвольного образования даже самых простых белковых молекул. Вероятность же самосборки сложных белков, состоящих из сотен L-аминокислот, соединенных между собой в определенной последовательности, еще меньше. Чтобы понять, какова она, приведем один весьма наглядный пример.
Предположим, мы хотим получить белковую молекулу из ста аминокислот в результате хаотичного, самопроизвольного возникновения в «первобытном бульоне». Сколько времени для этого необходимо? Как известно, природные белки состоят из двадцати аминокислот. Вероятность того, что мы случайно отберем из двадцати аминокислот строго определенную — один шанс из двадцати (или 0,05). Если мы хотим получить белок, аналогичный природному, то все аминокислоты, входящие в него, должны быть L-изомерами. Вероятность того, что отобранная аминокислота будет именно L-изомером — один шанс из двух (0,5). Присоединение аминокислот к растущей пептидной цепочке возможно с двух ее концов, следовательно, вероятность присоединения аминокислоты с «нужного» конца — один шанс из двух (0,5).
Таким образом, для того, чтобы найти вероятность появления одной определенной L-изомерной формы аминокислоты в нужном месте белка, нам необходимо просто перемножить все найденные нами три вероятности. Искомое число будет один шанс из восьмидесяти (0,0125). Вероятность того, что две L-формы конкретных аминокислот расположатся в нужной последовательности в белке один шанс из шести тысяч четырехсот (или 0,000156; чтобы получить эту величину необходимо умножить 0,0125 на 0.0125). Для ста аминокислот вероятность их случайного попадания в строго определенное место белка составляет один шанс из 4,9x10 191.
Оценочные расчеты, выполненные с целью определения примерного количества атомов в наблюдаемой части Вселенной, показывают, что вероятность найти конкретный атом методом проб и ошибок среди всех атомов Вселенной намного выше вероятности спонтанного возникновения белка из ста аминокислот, идентичного натуральному (образующемуся в живом организме).
Дело еще больше усложняется, если мы попытаемся обсудить вероятность самопроизвольного возникновения нуклеиновых кислот (ДНК и РНК).