Читаем Загадки космоса. Планеты и экзопланеты полностью

Почему же «Хаябуса-2» летела так долго и преодолела такое значительное расстояние? Из геометрии мы знаем, что самый короткий путь между двумя точками – прямая. На Земле путь по прямой оказывается чаще всего и самым быстрым. Но если дорогу вам преграждает, скажем, гора, гораздо меньше сил и энергии вы затратите, если эту гору обойдете, нежели если будете карабкаться по ней вверх, а потом вниз. Часто вы выбираете обходной путь, даже если на него требуется больше времени. Примерно так же рассуждают инженеры, только для них затраченная на доставку космического аппарата к астероиду энергия конвертируется в топливо, а в конечном счете – в деньги.

Для того чтобы достигнуть небесного тела наикратчайшим путем – по прямой, – космическому аппарату потребуются очень большие запасы топлива, и обойдется это невероятно дорого. В целях экономии инженеры максимально используют гравитационные маневры. Суть этих маневров состоит в том, чтобы за счет своевременного включения двигателей аппарат мог «оттолкнуться» от массивного тела, такого как планета, и изменить свою орбиту на более подходящую, затратив при этом минимальное количество топлива. Обычно гравитационные маневры совершаются в перицентре орбиты аппарата вокруг массивного тела[10]. В этой точке аппарат имеет наибольшую скорость, и даже малое ускорение может кардинальным образом изменить его орбиту. Перемещаясь с орбиты на орбиту с помощью таких маневров, космические аппараты успешно путешествуют по Солнечной системе. Однако каждый оборот на промежуточной орбите может занимать годы, что сильно увеличивает длительность полета. «Хаябуса-2» во время своего путешествия совершила один гравитационный маневр возле Земли и трижды ускорялась, сменив три орбиты.

Помимо дистанционного исследования Рюгу с помощью бортовых камер и научных приборов, «Хаябуса-2» сбросила на астероид четыре небольших мобильных модуля, которые успешно достигли его поверхности. Таким образом, «Хаябуса-2» стала первым космическим аппаратом, спускаемые модули которого совершили посадку на астероид[11]. Из-за слабой гравитации колеса на модулях использовать нельзя (в этом случае они становятся неуправляемыми). Поэтому инженеры придумали альтернативный способ: модули передвигались по поверхности астероида небольшими прыжками за счет вращения ассиметричного маховика, расположенного у них внутри.

Когда «Хаябуса-2» долетит до Земли[12], образцы вещества, собранные на Рюгу, будут сброшены на Землю в герметичной капсуле для дальнейшего анализа[13], а сам аппарат приступит к новой исследовательской миссии. Впервые в истории доставку астероидного вещества на Землю в 2010 году совершил аппарат «Хаябуса», предшественник «Хаябуса-2».

Взятие образцов осуществлялось в два этапа. Сначала, в феврале 2019 года, производился сбор частиц грунта с поверхности астероида. «Хаябуса-2» в момент максимального сближения с поверхностью астероида выстрелил по ней 5-граммовой танталовой пулей, захватил разлетевшиеся частички грунта, а затем снова поднялся на орбиту. Целью второго этапа, который начался в апреле 2019 года, был сбор образцов из более глубоких слоев грунта. 5 апреля от «Хаябуса-2» отделился 2,5-килограммовый медный снаряд с несколькими килограммами взрывчатки, а сам космический аппарат «эвакуировался» на другую сторону астероида. Затем произошла детонация взрывчатки, и ускоренный медный снаряд направился прямиком к астероиду! Ничего подобного прежде не предпринималось. Ученые могли лишь предполагать, какие последствия вызовет столкновение астероида со снарядом. Когда в конце апреля «Хаябуса-2» вернулся к месту событий, ученые обнаружили, что снаряд оставил на поверхности астероида 10-метровый кратер – это достаточно ценные сведения, исходя из которых можно довольно точно прогнозировать, как поведет себя астероид при более крупных столкновениях. В июле 2019 года «Хаябуса-2» произвел сбор образцов выброшенного из глубины вещества, не подвергавшегося воздействию суровой космической среды6, в области рядом с кратером. А в ноябре 2019 года японский аппарат сошел с орбиты вокруг Рюгу и отправился домой. Сложность каждого этапа миссии была колоссальной: любой просчет – и многолетний труд сотен людей оказался бы напрасным.

Все эти прошедшие, настоящие и будущие, сложные и дорогостоящие миссии по изучению астероидов и комет необходимы для того, чтобы детально, не упустив ничего важного, разобраться, как некогда скопление газа и пыли вокруг непримечательного молодого желтого карлика превратилось в астероиды и планеты и как в конечном итоге на одной из этих планет появилась жизнь. Какие из условий, возникших около Солнца, были уникальными, а какие должны были стать повсеместными? Существует ли хоть что-то, что отличает нашу звездную систему от тех миллиардов других, что мы находим в Галактике?



* * *

Перейти на страницу:

Все книги серии Библиотека Гутенберга

Безумие ли?
Безумие ли?

Основная цель книги – борьба со страхом и предубеждением к больным с психическими расстройствами. С одной стороны болезни психики, «безумие» рождают необычный и противоречивый интерес, с другой – «сумасшествие» является настолько пугающим, что в общественном сознании рождается желание закрыться, удалить психически больных из жизни общества. С третьей стороны, некоторое невежество, рожденное страхом, приводит к определенным спекуляциям в этой области. Зачастую родственники больных обращаются к неврологам, психологам, а то и вовсе к экстрасенсам и шаманам, а к психиатру боятся идти. Но вовремя не оказанная помощь может привести к более худшим последствиям, чем необходимость числиться на учете. Данная книга поможет взглянуть на все эти проблемы и будет способствовать уменьшению стигматизации и предубеждений перед психическими расстройствами и психиатрией.

Александр Станиславович Граница

Медицина

Похожие книги

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Что? Где? Когда?
Что? Где? Когда?

Книга известных игроков телевизионных клубов «Что? Где? Когда?» и «Брэйн ринг», членов Международной ассоциации клубов «Что? Где? Когда?» популяризирует интеллектуальные игры как эффективный способ занятия досуга и развития творческих способностей людей всех возрастов.Авторы раскрывают секреты составления вопросов, знакомят с методикой тренировки интеллектуальных способностей, делятся богатым опытом проведения турниров команд «Что? Где? Когда?» и «Брэйн ринг».В сборнике приведены вопросные материалы турниров, организованных московскими клубами «Что? Где? Когда?» в сезоны 1997-1999 гг.

Владимир Григорьевич Белкин , Евгений Венедиктович Алексеев , Ирина Константиновна Тюрикова , Максим Оскарович Поташев , Наиля Адилевна Курмашева

Научная литература / Прочая научная литература / Образование и наука