Читаем Загадки космоса. Планеты и экзопланеты полностью

Проблема происхождения планетных систем, пожалуй, одна из самых интересных и фундаментальных в астрономии. Первую гипотезу, которую можно назвать научной, предложил французский математик и философ Рене Декарт. Согласно его идее Солнце и все планеты сформировались из гигантского газопылевого вихря. Декарт был современником Иоганна Кеплера и Галилео Галилея. К тому времени Коперник уже создал гелиоцентрическую модель и опубликовал трактат «О вращении небесных сфер», а вот Ньютон еще не родился и не изложил свою теорию гравитации в «Математических началах натуральной философии»[14]. Так что вихревая гипотеза Декарта вполне вписывалась в научную парадигму того времени, объясняя устройство Солнечной системы без привлечения гравитации. В XVIII веке усилиями Эммануила Сведенборга7, Иммануила Канта8 и Пьера-Симона де Лапласа9 была разработана теория, которая объясняла формирование Солнечной системы как результат вращательной неустойчивости газопылевой туманности. Эта теория хоть и учитывала гравитацию, но и в ней обнаружились недостатки. Например, сегодня нам известно, что в Солнечной системе на долю планет приходится 98 % момента импульса – величины, характеризующей инерцию вращательного движения, тогда как на долю Солнца лишь 2 %. Согласно же теории Сведенборга – Канта – Лапласа должно было быть наоборот.

В 60-х годах XX века советский астроном Виктор Сергеевич Сафронов опубликовал работу «Эволюция допланетного облака и образование Земли и планет»10, ставшую впоследствии классической. Сафронов смог не только создать теорию, объясняющую особенности строения нашей планетной системы, но и предсказать результаты еще не произведенных наблюдений – например, существование протопланетных газопылевых дисков и их кольцевидную структуру. Его идеи получили продолжение в трудах многих ученых. И все это привело к тому, что уже к концу 1970-х годов небулярная[15] (или аккреционная) теория формирования планет казалась единственно верной, практически завершенной и довольно понятной.

Теория Сафронова объясняет многое из того, что мы видим в Солнечной системе и знаем о ней: разделение планет на относительно маленькие каменистые и огромные газовые, расположение орбит всех планет в одной плоскости – экваториальной плоскости Солнца (ее называют плоскостью эклиптики), одинаковое направление обращения всех планет вокруг Солнца (об исключениях вроде Венеры и Урана выдвигались различные версии), химические и физические свойства планет. В общем, это была отличная теория. Однако же в те времена, когда она создавалась, в распоряжении ученых была лишь одна планетная система для исследования – наша. И казалось логичным предположить, что все планетные системы вокруг других звезд, которые мы когда-либо обнаружим, будут похожи на нее, а процесс формирования планет окажется идентичным тому, что произошел когда-то около Солнца. Такой была старая научная парадигма.

Последние десятилетия принесли нам почти экспоненциальный рост числа открытых внесолнечных планет. Мы обнаружили планетные системы со структурой, совершенно не похожей на нашу. Телескопы, которые мы создали, находят газовых гигантов, расположенных ближе к своим звездам, чем орбита Меркурия к Солнцу. Как они туда попали? Мы находим планеты таких типов, которых нет в Солнечной системе. Как они могли образоваться? Планеты и их характеристики перестали укладываться в старую парадигму. То, что мы раньше считали типичным, оказалось если не уникальным, то все же совсем не типичным. И пришлось создавать новую парадигму. Ее формирование еще далеко от завершения, но кое-что понять нам уже удалось.

Начнем с самого начала – молекулярных облаков. Во Вселенной очень много молекулярного газа, состоящего в основном из водорода (~90 %) и гелия (~10 %) с небольшими примесями других химических элементов. Масса межзвездного газа в Галактике составляет несколько десятков миллиардов масс Солнца. Этот газ не распределен равномерно в галактической плоскости, он собирается в огромные облака. Такие облака могут быть поистине гигантскими – до миллиона масс Солнца – и очень холодными: их средняя температура около –230 °C.


Рисунок 6. Молекулярное облако Барнард 68 в созвездии Змееносца. Изображение получено с помощью 8,2-метрового телескопа «Анту» комплекса VLT в Чили


Некоторые из них выглядят как огромные черные провалы. Когда английский астроном Уильям Гершель увидел их в свой телескоп, он подумал, что эти «дыры в небесах» – разрывы в структуре Галактики11. Сам по себе газ, конечно, прозрачен, но содержащиеся в облаке пылинки, размером всего в несколько микрон, поглощают практически все оптическое излучение, падающее на них, и облако становится абсолютно черным для наблюдателя. Другие туманности в телескопы выглядят совсем иначе. Например, о туманности в созвездии Ориона тот же Гершель в 1774 году писал как о «бесформенном огненном тумане, хаотической материи будущих солнц». Он правильно предположил, что в таких облаках происходит процесс звездообразования.

Перейти на страницу:

Все книги серии Библиотека Гутенберга

Безумие ли?
Безумие ли?

Основная цель книги – борьба со страхом и предубеждением к больным с психическими расстройствами. С одной стороны болезни психики, «безумие» рождают необычный и противоречивый интерес, с другой – «сумасшествие» является настолько пугающим, что в общественном сознании рождается желание закрыться, удалить психически больных из жизни общества. С третьей стороны, некоторое невежество, рожденное страхом, приводит к определенным спекуляциям в этой области. Зачастую родственники больных обращаются к неврологам, психологам, а то и вовсе к экстрасенсам и шаманам, а к психиатру боятся идти. Но вовремя не оказанная помощь может привести к более худшим последствиям, чем необходимость числиться на учете. Данная книга поможет взглянуть на все эти проблемы и будет способствовать уменьшению стигматизации и предубеждений перед психическими расстройствами и психиатрией.

Александр Станиславович Граница

Медицина

Похожие книги

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Что? Где? Когда?
Что? Где? Когда?

Книга известных игроков телевизионных клубов «Что? Где? Когда?» и «Брэйн ринг», членов Международной ассоциации клубов «Что? Где? Когда?» популяризирует интеллектуальные игры как эффективный способ занятия досуга и развития творческих способностей людей всех возрастов.Авторы раскрывают секреты составления вопросов, знакомят с методикой тренировки интеллектуальных способностей, делятся богатым опытом проведения турниров команд «Что? Где? Когда?» и «Брэйн ринг».В сборнике приведены вопросные материалы турниров, организованных московскими клубами «Что? Где? Когда?» в сезоны 1997-1999 гг.

Владимир Григорьевич Белкин , Евгений Венедиктович Алексеев , Ирина Константиновна Тюрикова , Максим Оскарович Поташев , Наиля Адилевна Курмашева

Научная литература / Прочая научная литература / Образование и наука