Если бы проблема метрового барьера была единственным парадоксом теории протопланетных дисков! Но нет. Например, существует также проблема радиального дрейфа частиц17
. Несложные математические выкладки показывают, что сила сопротивления, которую газ оказывает на частицы протопланетного диска, становится максимальной для тел размером около метра. Испытывая сильное сопротивление, частицы должны быстро терять орбитальную скорость и падать на звезду – примерно в течение тысячи лет. Таким образом, рост до километровых размеров оказывается невозможен. И все же то, что мы с вами живем на нашей планете, говорит о том, что природа нашла способ преодолеть все эти сложности.Какими бы ни были механизмы преодоления метрового барьера или устранения проблемы радиального дрейфа, как только частицы достигают километровых размеров (частицы такого размера и больше называют планетезималями), сила гравитации между ними начинает преобладать над газодинамическими силами в диске. Это знаменует начало третьего этапа формирования планет. Уже через несколько сотен тысяч лет появляется множество планетарных зародышей с массами, достигающими марсианской. Окончательно планеты формируются в течение следующих нескольких миллионов лет.
Когда в протопланетном диске в ходе какого-либо динамического процесса (например, движения протопланеты, которая расчищает пространство перед собой) нарушается симметрия распределения вещества, в нем формируются области с более высокой плотностью газа, чем в окружающем пространстве. Такие структуры не «законсервированы» в одном месте, а способны распространяться по диску, словно волны, – поэтому их и называют волнами плотности. Считается, что аккреция вещества на протопланету порождает две смыкающиеся на ней спиральные волны плотности: одна закручивается внутрь орбиты протопланеты, другая – вовне18
. Хоть наблюдения за протопланетными дисками и дали возможность увидеть в их структуре ярко выраженные кольца и спирали (см. рис. 7), из-за плохого качества изображений эти структуры оставались лишь намеками на формирование в диске планет. Подтверждение теория нашла весной 2020 года, когда было опубликовано великолепное изображение протопланетного диска звездыПо мере удаления от центральной звезды температура газа в протопланетном диске падает, и вот, с некоторого момента, газ начинает конденсироваться и появляются кристаллики льда из аммиака, метана, воды и других веществ. Это очень важный момент. Условная линия, отделяющая в протопланетном диске участок, где большинство летучих веществ находится в газообразном состоянии, от участка, где эти же вещества пребывают в сублимированном виде (в виде льда), называется снеговой линией. Изменение яркости и температуры звезды в процессе ее эволюции заставляет снеговую линию перемещаться по протопланетному диску. В Солнечной системе снеговая линия водяного льда в протопланетном диске проходила в районе Главного пояса астероидов, между орбитами Марса и Юпитера.
За снеговой линией частички льда играют важнейшую роль в формировании планеты. Масса льда, которую аккумулируют протопланеты, на порядки больше массы аккумулируемых ими твердых частичек. Когда масса формирующейся планеты превышает 10–15 M⊕
, планета становится способна притягивать газ из протопланетного облака. Так рождаются газовые гиганты. В Солнечной системе планеты от Меркурия до Марса образовались в условиях относительно высоких температур, а Юпитер и более далекие планеты сформировались за снеговой линией и стали газовыми гигантами.Стоит отметить, что существует еще один возможный механизм образования газовых гигантов. В протопланетном диске, в сверхплотных рукавах газа и пыли, вращающихся вокруг звезды, спонтанно могут возникать регионы с повышенной плотностью. Некоторые из них сразу же распадаются, а другие, наиболее массивные, существуют тысячи лет, притягивая к себе газ из близлежащих областей. Такое явление называется гравитационной неустойчивостью. Неустойчивость порождает гравитационно связанное газопылевое облако массой в несколько масс Юпитера, которое может достигать в поперечнике 2–6 а. е.20
Такое возможно лишь во внешнем, расширенном протопланетном диске, который сформировался вдали от своей звезды, за снеговой линией.