Читаем Загадки космоса. Планеты и экзопланеты полностью

Пройдет 270 лет со дня рождения Гершеля, когда в космос отправится космический телескоп «Гершель» – самый крупный из когда-либо запущенных в космос инфракрасных телескопов. В 2013 году он завершил свою работу, благодаря ему мы многое узнали о процессе формирования звезд, планет и галактик и получили впечатляющие фотографии далеких облаков газа. Как оказалось, эти облака состоят в основном из молекулярного водорода и гелия, пыли и частиц различных видов льда (в основном водяного). Внутри облака́ имеют неоднородную структуру: газ концентрируется в длинные нитеобразные структуры – филаменты, – которые находятся в постоянном движении.

Типичная масса молекулярного межзвездного облака составляет от миллиона до сотен миллионов масс Солнца, а значит, теоретически каждое из них может породить миллионы звезд. Однако такого большого количества звезд из них не формируется: молекулярные облака являются довольно устойчивыми структурами и не склонны к процессам звездообразования. Их равновесие поддерживает внутреннее давление мощных турбулентных вихрей газа. Турбулентные потоки препятствуют разрушению молекулярных облаков под действием сил гравитации, но в относительно малых масштабах влияние этих потоков не столь велико, и коллапс небольших облаков газа все же происходит – так инициируется процесс образования звезд. Например, если рядом с таким облаком, находящимся на грани коллапса, или внутри него взрывается сверхновая или облако сталкивается с другим облаком, то равновесие может быть нарушено.



Считается, что наше Солнце родилось около 4,6 миллиарда лет назад12 в результате взрыва сверхновой в окрестностях одного из таких молекулярных облаков. Волны сжатия, распространяющиеся по межзвездному газу, приводят к значительному повышению концентрации вещества, и равновесие в некоторых частях облака нарушается. То место, где это происходит, становится центром притяжения, и к нему стекается газ из соседних областей – происходит коллапс участка облака. Размер этого участка газопылевого облака, газ из которого формирует звезду, составляет тысячи астрономических единиц. Коллапс облака напоминает процесс формирования снежного кома, несущегося с горы: газ поступает в центр коллапса все быстрее, его становится все больше. Когда масса газа достигает около 7–8 % от массы Солнца, примерно через десять тысяч лет, начинаются термоядерные реакции и зажигается новая звезда. Но это не единственный возможный путь образования звезд. Исследования некоторых ученых показывают, что инициировать звездообразование могут также столкновения филаментов внутри газопылевого облака13.

Коллапсирующее облако формирует тонкий диск, окружающий центр коллапса – будущую звезду. Образовавшиеся диски называют протопланетными, потому что в них в скором времени начнется «стройка» планет. Почему вещество оседает на диск, а не равномерно окружает протозвезду? Причины тут две. Первая состоит в том, что коллапс облака из-за неравномерности распределения газа происходит в каком-то одном из трех измерений, причем этот коллапс, опять же из-за неравномерности распределения, придает материи коллапсирующего облака начальное вращение. Вторая причина более фундаментальна: уменьшение радиуса коллапсирующего облака приводит к тому, что скорость его вращения увеличивается[16], и тут на авансцену выходят центробежные силы. Они препятствуют аккреции (падению)[17] вещества на протозвезду в плоскости вращения и не мешают его падению во всех остальных направлениях. С течением времени масса звезды увеличивается, а в экваториальной плоскости вращения формируется тонкий диск.

Так как протопланетные диски нагреваются излучением звезды, их структуру и свойства лучше изучать в инфракрасном диапазоне – современные телескопы позволяют проводить такие наблюдения. Но современные телескопы позволяют изучать небо в различных диапазонах электромагнитного излучения. На фотографиях, полученных с помощью инфракрасных и субмиллиметровых космических и наземных телескопов, межзвездные облака и протопланетные диски предстают перед наблюдателем во всей красе. Такие телескопы, как уже упоминавшаяся космическая обсерватория «Гершель», спутник IRAS, космический телескоп «Спитцер», система телескопов ALMA, расположенная в высокогорной пустыне в Чили, телескоп Джеймса Клерка Максвелла и некоторые другие, позволили в прямом смысле заглянуть внутрь протопланетных дисков, увидеть их структуру.

Межзвездные облака, в которых идет процесс интенсивного звездообразования, часто поэтически называют «звездные колыбели». Ближайшее к нам место, где прямо сейчас рождаются звезды, – туманность Тельца – располагается на расстоянии 140 св. лет от наc; интенсивное звездообразование также идет в туманности Ориона и многих других. Как правило, звезды в газовых облаках рождаются группами: чтобы это представить, вообразите себе пчелиный рой, застывший в воздухе, замените каждую пчелу на звезду и поместите этот «рой» в огромное газовое облако.

Перейти на страницу:

Все книги серии Библиотека Гутенберга

Безумие ли?
Безумие ли?

Основная цель книги – борьба со страхом и предубеждением к больным с психическими расстройствами. С одной стороны болезни психики, «безумие» рождают необычный и противоречивый интерес, с другой – «сумасшествие» является настолько пугающим, что в общественном сознании рождается желание закрыться, удалить психически больных из жизни общества. С третьей стороны, некоторое невежество, рожденное страхом, приводит к определенным спекуляциям в этой области. Зачастую родственники больных обращаются к неврологам, психологам, а то и вовсе к экстрасенсам и шаманам, а к психиатру боятся идти. Но вовремя не оказанная помощь может привести к более худшим последствиям, чем необходимость числиться на учете. Данная книга поможет взглянуть на все эти проблемы и будет способствовать уменьшению стигматизации и предубеждений перед психическими расстройствами и психиатрией.

Александр Станиславович Граница

Медицина

Похожие книги

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Что? Где? Когда?
Что? Где? Когда?

Книга известных игроков телевизионных клубов «Что? Где? Когда?» и «Брэйн ринг», членов Международной ассоциации клубов «Что? Где? Когда?» популяризирует интеллектуальные игры как эффективный способ занятия досуга и развития творческих способностей людей всех возрастов.Авторы раскрывают секреты составления вопросов, знакомят с методикой тренировки интеллектуальных способностей, делятся богатым опытом проведения турниров команд «Что? Где? Когда?» и «Брэйн ринг».В сборнике приведены вопросные материалы турниров, организованных московскими клубами «Что? Где? Когда?» в сезоны 1997-1999 гг.

Владимир Григорьевич Белкин , Евгений Венедиктович Алексеев , Ирина Константиновна Тюрикова , Максим Оскарович Поташев , Наиля Адилевна Курмашева

Научная литература / Прочая научная литература / Образование и наука